针对基于混合米制地图机器人同步定位与地图创建(Simultaneous localization and mapping,SLAM)中地图划分方法不完善的问题,提出了基于Voronoi地图表示方法的同步定位与地图创建算法VorSLAM.该算法在全局坐标系下创建特征地图,并根据...针对基于混合米制地图机器人同步定位与地图创建(Simultaneous localization and mapping,SLAM)中地图划分方法不完善的问题,提出了基于Voronoi地图表示方法的同步定位与地图创建算法VorSLAM.该算法在全局坐标系下创建特征地图,并根据此特征地图使用Voronoi图唯一地划分地图空间,在每一个划分内部创建一个相对于特征的局部稠密地图.特征地图与各个局部地图最终一起连续稠密地描述了环境.Voronoi地图表示方法解决了地图划分的唯一性问题,理论证明局部地图可以完整描述该划分所对应的环境轮廓.该地图表示方法一个基本特点是特征与局部地图一一对应,每个特征都关联一个定义在该特征上的局部地图.基于该特点,提出了一个基于形状匹配的数据关联算法,用以解决传统数据关联算法出现的多重关联问题.一个公寓弧形走廊的实验验证了VorSLAM算法和基于形状匹配的数据关联方法的有效性.展开更多
SLAM(simultaneous localization and mapping)是无人载体实现自主导航定位的关键技术。针对传统视觉SLAM系统在动态场景下导航定位精度低的问题,在视觉SLAM系统的基础上引入惯性传感器(inertial measure-ment unit)。在ORB-SLAM3系统...SLAM(simultaneous localization and mapping)是无人载体实现自主导航定位的关键技术。针对传统视觉SLAM系统在动态场景下导航定位精度低的问题,在视觉SLAM系统的基础上引入惯性传感器(inertial measure-ment unit)。在ORB-SLAM3系统的基础上设计了一种面向动态环境的视觉惯性SLAM系统。提出一种基于向量场一致性(vector field consensus,VFC)的稀疏光流法来追踪图像的特征点并计算基础矩阵,分别利用光流对极几何约束和惯性传感器信息计算特征点的动态概率,提出一种联合的动态特征检测方法计算特征点的总动态概率,并将动态概率大于阈值的特征点进行剔除,在SLAM系统的前端实现了视觉信息与惯性运动信息的紧耦合。在数据集上的实验结果表明,该视觉惯性SLAM改进算法有良好的性能表现。展开更多
文摘针对基于混合米制地图机器人同步定位与地图创建(Simultaneous localization and mapping,SLAM)中地图划分方法不完善的问题,提出了基于Voronoi地图表示方法的同步定位与地图创建算法VorSLAM.该算法在全局坐标系下创建特征地图,并根据此特征地图使用Voronoi图唯一地划分地图空间,在每一个划分内部创建一个相对于特征的局部稠密地图.特征地图与各个局部地图最终一起连续稠密地描述了环境.Voronoi地图表示方法解决了地图划分的唯一性问题,理论证明局部地图可以完整描述该划分所对应的环境轮廓.该地图表示方法一个基本特点是特征与局部地图一一对应,每个特征都关联一个定义在该特征上的局部地图.基于该特点,提出了一个基于形状匹配的数据关联算法,用以解决传统数据关联算法出现的多重关联问题.一个公寓弧形走廊的实验验证了VorSLAM算法和基于形状匹配的数据关联方法的有效性.
文摘SLAM(simultaneous localization and mapping)是无人载体实现自主导航定位的关键技术。针对传统视觉SLAM系统在动态场景下导航定位精度低的问题,在视觉SLAM系统的基础上引入惯性传感器(inertial measure-ment unit)。在ORB-SLAM3系统的基础上设计了一种面向动态环境的视觉惯性SLAM系统。提出一种基于向量场一致性(vector field consensus,VFC)的稀疏光流法来追踪图像的特征点并计算基础矩阵,分别利用光流对极几何约束和惯性传感器信息计算特征点的动态概率,提出一种联合的动态特征检测方法计算特征点的总动态概率,并将动态概率大于阈值的特征点进行剔除,在SLAM系统的前端实现了视觉信息与惯性运动信息的紧耦合。在数据集上的实验结果表明,该视觉惯性SLAM改进算法有良好的性能表现。