在智慧矿山建设的背景下,智能化设备的应用日益成为矿山智慧化改造的主要内容,用于巡检、危险区域勘测等任务的煤矿井下智能机器人运行依赖于数字地图构建和机器人自身定位,但大多数传统的定位方法在煤矿井下出现了低效甚至失效的情况,...在智慧矿山建设的背景下,智能化设备的应用日益成为矿山智慧化改造的主要内容,用于巡检、危险区域勘测等任务的煤矿井下智能机器人运行依赖于数字地图构建和机器人自身定位,但大多数传统的定位方法在煤矿井下出现了低效甚至失效的情况,同步定位与建图技术(Simultaneous Localization and Mapping,SLAM)成为了煤矿井下智能机器人定位方法的较优选择。然而,受制于激光雷达的高成本,以及相机在井下的低光照环境性能不佳,需要设计一种兼顾低成本和具有井下低光照环境适应性的SLAM定位方法,故提出了一种具有井下暗光照适应性煤矿井下机器人定位方法。首先,采集了陕西省宝鸡市凤县某煤矿井下的实景图像和SLAM所需的相机与IMU数据,根据图像制作了非匹配的暗光与正常光数据集,经过数据扩增达到3560张图像。设计了结合自注意力模块的EnlightenGAN图像增强网络,在不依赖配对数据集的情况下兼顾图像不同区域的依赖关系应对图像光照不均区域。在ORB-SLAM3框架的基础上,引入全局部图像检测对输入图像进行筛分,引入基于解析解的IMU初始化改进策略提高初始化速度,并引入了改进的图像增强网络对低光照以及光照不均的图像进行增强处理。在EuRoC数据集上的试验表明,基于图像增强的煤矿井下智能机器人定位方法能够在低光照环境下降低13.7%的ERMS和15.24%的ESD。在2个实际煤矿巷道场景中,系统能够识别低光照环境、增加SLAM系统提取的特征点数量,减少定位轨迹的漂移现象,最终改善系统在巷道低光照区域的定位效果。展开更多
激光雷达同时定位与建图(LiDAR SLAM)技术通常适用于静态环境下,而在动态场景下,定位与建图效果会受到影响;同时,地面分割模块通常用作点云分类处理,然而地面欠分割问题会影响特征点的选择;并且,通常的框架只使用一种回环检测方法,这可...激光雷达同时定位与建图(LiDAR SLAM)技术通常适用于静态环境下,而在动态场景下,定位与建图效果会受到影响;同时,地面分割模块通常用作点云分类处理,然而地面欠分割问题会影响特征点的选择;并且,通常的框架只使用一种回环检测方法,这可能会导致漏检现象。针对上述问题,提出一种动态场景下基于地面分割与回环优化的LiDAR SLAM系统(GSLC-SLAM)。首先,利用lmnet对点云进行动态剔除,该算法将生成的距离图像与残差图像作为网络的输入,并通过SalsaNext网络预测出动态物体;其次,利用高效的gridestiamte算法进行地面分割,该算法利用不均匀网格划分的方法来减少网格的数量,从而保证分割的效率,并利用正交性、高度和平坦度这3个指标进一步筛选地面点;最后,使用由LinK3D(Linear Keypoints for Three Dimensions point cloud)描述子与BoW3D(Bag of Words for Three Dimensions point cloud)词袋构成的新回环检测方法检测回环,该方法利用边缘特征点生成描述子,使用类似于汉明距离的方式进行描述子匹配,并采用类似于词袋的方法构建BoW3D作为LinK3D描述子的数据库,从而对关键帧提取的描述子进行存储以及回环检测。在数据集KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago)上的实验结果表明,在KITTI00、02与05序列中与Lego-Loam(Lightweight and ground-optimized LiDAR odometry and mapping)相比,GSLC-SLAM的均方根误差(RMSE)分别降低了5.8%,78.2%,12.5%;相较于F-LOAM(Fast LiDAR Odometry And Mapping),在KITTI00与05序列中GSLC-SLAM的RMSE分别降低了76.7%和53.8%,而在KITTI02序列中GSLC-SLAM表现不佳。经过验证可知,GSLC-SLAM可以有效减少动态物体的干扰、精确分割地面点并减少回环检测的漏检,进而使系统定位精度更高且更鲁棒。展开更多
同步定位与地图构建(simultaneous localization and mapping, SLAM)技术能够在陌生环境中定位自身位置的同时构建周围环境,已经成为机器人、无人驾驶和虚拟现实等领域非常重要的基础技术.隐式建图方法对于场景未观测区域具有一定补全...同步定位与地图构建(simultaneous localization and mapping, SLAM)技术能够在陌生环境中定位自身位置的同时构建周围环境,已经成为机器人、无人驾驶和虚拟现实等领域非常重要的基础技术.隐式建图方法对于场景未观测区域具有一定补全预测能力,可以实现对遮挡或稀疏观测区域的孔填充,近年来,将该方法融入SLAM,以提高其系统性能逐渐成为SLAM领域的研究热点.文中首先总结应用于视觉SLAM中的隐式建图方法并基于地图存储载体对其进行分类;然后基于建图渲染速度提高、大规模场景扩展方法、建图鲁棒性提高、前端功能的改进和回环检测的补充等改进方向对结合隐式建图的视觉SLAM进行分类说明,并梳理了面向语义建图、动态场景和多传感器融合等特定场景的隐式建图SLAM系统;随后介绍隐式建图SLAM系统常用的数据集和评价标准,并基于相同数据集和评价标准对多个SLAM系统进行对比和分析;最后总结隐式建图视觉SLAM系统提高自身性能的改进方式,剖析系统现存的计算量大和遗忘严重等短板,并与其他技术对比展望未来发展趋势.展开更多
为提升自动驾驶车辆在多车道行驶与作业时的道路环境感知能力,提出了自动驾驶环境下车道级雷视融合方法 LLV-SLAM(lane-level LiDAR-visual fusion SLAM),并构建了适用于雷视融合的实时定位与建图算法(simultaneous localization and ma...为提升自动驾驶车辆在多车道行驶与作业时的道路环境感知能力,提出了自动驾驶环境下车道级雷视融合方法 LLV-SLAM(lane-level LiDAR-visual fusion SLAM),并构建了适用于雷视融合的实时定位与建图算法(simultaneous localization and mapping,SLAM)。首先,在视觉特征点提取的基础上引入直方图均衡化,并利用激光雷达获取特征点深度信息,通过视觉特征跟踪以提升SLAM系统鲁棒性。其次,利用视觉关键帧信息对激光点云进行运动畸变校正,并将LeGO-LOAM(lightweight and groud-optimized lidar odometry and mapping)融入视觉ORBSLAM2(oriented FAST and rotated BRIEF SLAM2)以增强闭环检测与矫正性能,降低系统累计误差。最后,将视觉图像所获取的位姿进行坐标转换作为激光里程计的位姿初值,辅助激光雷达SLAM进行三维场景重建。实验结果表明:相比于传统的SLAM方法,融合后的LLV-SLAM方法平均定位时延减少了41.61%;在x、y、z方向上的平均定位误差分别减少了34.63%、38.16%、24.09%;在滚转角、俯仰角、偏航角方向上的平均旋转误差减少了40.8%、37.52%、39.5%。LLV-SLAM算法有效抑制了LeGO-LOAM算法的尺度漂移,实时性和鲁棒性有显著提升,能够满足自动驾驶车辆对多车道道路环境的感知需要。展开更多
为提高ORB-SLAM2 (oriented fast and rotated brief, and simultaneous localization and mapping)系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了融合迭代最近点拟合(iterative closest point, ICP)算法与曼哈顿世界假说的...为提高ORB-SLAM2 (oriented fast and rotated brief, and simultaneous localization and mapping)系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了融合迭代最近点拟合(iterative closest point, ICP)算法与曼哈顿世界假说的位姿估计策略并在系统中加入稠密建图线程。首先通过ORB(oriented fast and rotated brief)特征点法、最小显著性差异(least-significant difference, LSD)算法和聚集层次聚类(agglomerative hierarchical clustering, AHC)方法提取点、线、面特征,其中点、线特征与上一帧匹配,面特征在全局地图匹配。然后采用基于surfel的稠密建图策略将图像划分为非平面与平面区域,非平面采用ICP算法计算位姿,平面则通过面与面的正交关系确定曼哈顿世界从而使用不同估计策略,其中曼哈顿世界场景通过位姿解耦实现基于曼哈顿帧观测的无漂移旋转估计,而该场景的平移以及非曼哈顿世界场景的位姿采用追踪的点、线、面特征进行估计和优化;最后根据关键帧和相应位姿实现稠密建图。采用慕尼黑工业大学(technische universit?t münchen, TUM)数据集验证所提建图方法,经过与ORB-SLAM2算法比较,均方根误差平均减少0.24 cm,平均定位精度提高7.17%,验证了所提方法进行稠密建图的可行性和有效性。展开更多
文摘在智慧矿山建设的背景下,智能化设备的应用日益成为矿山智慧化改造的主要内容,用于巡检、危险区域勘测等任务的煤矿井下智能机器人运行依赖于数字地图构建和机器人自身定位,但大多数传统的定位方法在煤矿井下出现了低效甚至失效的情况,同步定位与建图技术(Simultaneous Localization and Mapping,SLAM)成为了煤矿井下智能机器人定位方法的较优选择。然而,受制于激光雷达的高成本,以及相机在井下的低光照环境性能不佳,需要设计一种兼顾低成本和具有井下低光照环境适应性的SLAM定位方法,故提出了一种具有井下暗光照适应性煤矿井下机器人定位方法。首先,采集了陕西省宝鸡市凤县某煤矿井下的实景图像和SLAM所需的相机与IMU数据,根据图像制作了非匹配的暗光与正常光数据集,经过数据扩增达到3560张图像。设计了结合自注意力模块的EnlightenGAN图像增强网络,在不依赖配对数据集的情况下兼顾图像不同区域的依赖关系应对图像光照不均区域。在ORB-SLAM3框架的基础上,引入全局部图像检测对输入图像进行筛分,引入基于解析解的IMU初始化改进策略提高初始化速度,并引入了改进的图像增强网络对低光照以及光照不均的图像进行增强处理。在EuRoC数据集上的试验表明,基于图像增强的煤矿井下智能机器人定位方法能够在低光照环境下降低13.7%的ERMS和15.24%的ESD。在2个实际煤矿巷道场景中,系统能够识别低光照环境、增加SLAM系统提取的特征点数量,减少定位轨迹的漂移现象,最终改善系统在巷道低光照区域的定位效果。
文摘激光雷达同时定位与建图(LiDAR SLAM)技术通常适用于静态环境下,而在动态场景下,定位与建图效果会受到影响;同时,地面分割模块通常用作点云分类处理,然而地面欠分割问题会影响特征点的选择;并且,通常的框架只使用一种回环检测方法,这可能会导致漏检现象。针对上述问题,提出一种动态场景下基于地面分割与回环优化的LiDAR SLAM系统(GSLC-SLAM)。首先,利用lmnet对点云进行动态剔除,该算法将生成的距离图像与残差图像作为网络的输入,并通过SalsaNext网络预测出动态物体;其次,利用高效的gridestiamte算法进行地面分割,该算法利用不均匀网格划分的方法来减少网格的数量,从而保证分割的效率,并利用正交性、高度和平坦度这3个指标进一步筛选地面点;最后,使用由LinK3D(Linear Keypoints for Three Dimensions point cloud)描述子与BoW3D(Bag of Words for Three Dimensions point cloud)词袋构成的新回环检测方法检测回环,该方法利用边缘特征点生成描述子,使用类似于汉明距离的方式进行描述子匹配,并采用类似于词袋的方法构建BoW3D作为LinK3D描述子的数据库,从而对关键帧提取的描述子进行存储以及回环检测。在数据集KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago)上的实验结果表明,在KITTI00、02与05序列中与Lego-Loam(Lightweight and ground-optimized LiDAR odometry and mapping)相比,GSLC-SLAM的均方根误差(RMSE)分别降低了5.8%,78.2%,12.5%;相较于F-LOAM(Fast LiDAR Odometry And Mapping),在KITTI00与05序列中GSLC-SLAM的RMSE分别降低了76.7%和53.8%,而在KITTI02序列中GSLC-SLAM表现不佳。经过验证可知,GSLC-SLAM可以有效减少动态物体的干扰、精确分割地面点并减少回环检测的漏检,进而使系统定位精度更高且更鲁棒。
文摘同步定位与地图构建(simultaneous localization and mapping, SLAM)技术能够在陌生环境中定位自身位置的同时构建周围环境,已经成为机器人、无人驾驶和虚拟现实等领域非常重要的基础技术.隐式建图方法对于场景未观测区域具有一定补全预测能力,可以实现对遮挡或稀疏观测区域的孔填充,近年来,将该方法融入SLAM,以提高其系统性能逐渐成为SLAM领域的研究热点.文中首先总结应用于视觉SLAM中的隐式建图方法并基于地图存储载体对其进行分类;然后基于建图渲染速度提高、大规模场景扩展方法、建图鲁棒性提高、前端功能的改进和回环检测的补充等改进方向对结合隐式建图的视觉SLAM进行分类说明,并梳理了面向语义建图、动态场景和多传感器融合等特定场景的隐式建图SLAM系统;随后介绍隐式建图SLAM系统常用的数据集和评价标准,并基于相同数据集和评价标准对多个SLAM系统进行对比和分析;最后总结隐式建图视觉SLAM系统提高自身性能的改进方式,剖析系统现存的计算量大和遗忘严重等短板,并与其他技术对比展望未来发展趋势.
文摘为提升自动驾驶车辆在多车道行驶与作业时的道路环境感知能力,提出了自动驾驶环境下车道级雷视融合方法 LLV-SLAM(lane-level LiDAR-visual fusion SLAM),并构建了适用于雷视融合的实时定位与建图算法(simultaneous localization and mapping,SLAM)。首先,在视觉特征点提取的基础上引入直方图均衡化,并利用激光雷达获取特征点深度信息,通过视觉特征跟踪以提升SLAM系统鲁棒性。其次,利用视觉关键帧信息对激光点云进行运动畸变校正,并将LeGO-LOAM(lightweight and groud-optimized lidar odometry and mapping)融入视觉ORBSLAM2(oriented FAST and rotated BRIEF SLAM2)以增强闭环检测与矫正性能,降低系统累计误差。最后,将视觉图像所获取的位姿进行坐标转换作为激光里程计的位姿初值,辅助激光雷达SLAM进行三维场景重建。实验结果表明:相比于传统的SLAM方法,融合后的LLV-SLAM方法平均定位时延减少了41.61%;在x、y、z方向上的平均定位误差分别减少了34.63%、38.16%、24.09%;在滚转角、俯仰角、偏航角方向上的平均旋转误差减少了40.8%、37.52%、39.5%。LLV-SLAM算法有效抑制了LeGO-LOAM算法的尺度漂移,实时性和鲁棒性有显著提升,能够满足自动驾驶车辆对多车道道路环境的感知需要。
文摘为提高ORB-SLAM2 (oriented fast and rotated brief, and simultaneous localization and mapping)系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了融合迭代最近点拟合(iterative closest point, ICP)算法与曼哈顿世界假说的位姿估计策略并在系统中加入稠密建图线程。首先通过ORB(oriented fast and rotated brief)特征点法、最小显著性差异(least-significant difference, LSD)算法和聚集层次聚类(agglomerative hierarchical clustering, AHC)方法提取点、线、面特征,其中点、线特征与上一帧匹配,面特征在全局地图匹配。然后采用基于surfel的稠密建图策略将图像划分为非平面与平面区域,非平面采用ICP算法计算位姿,平面则通过面与面的正交关系确定曼哈顿世界从而使用不同估计策略,其中曼哈顿世界场景通过位姿解耦实现基于曼哈顿帧观测的无漂移旋转估计,而该场景的平移以及非曼哈顿世界场景的位姿采用追踪的点、线、面特征进行估计和优化;最后根据关键帧和相应位姿实现稠密建图。采用慕尼黑工业大学(technische universit?t münchen, TUM)数据集验证所提建图方法,经过与ORB-SLAM2算法比较,均方根误差平均减少0.24 cm,平均定位精度提高7.17%,验证了所提方法进行稠密建图的可行性和有效性。