目的针对当前物流背景下普遍出现的送货公司外包、退换货频繁等问题,结合现有的碳排放政策,提出低碳背景下开放式同时送取货选址−路径模型(Low-Carbon Open Location-routing Problem with Simultaneous Pickup and Delivery Problem,LO...目的针对当前物流背景下普遍出现的送货公司外包、退换货频繁等问题,结合现有的碳排放政策,提出低碳背景下开放式同时送取货选址−路径模型(Low-Carbon Open Location-routing Problem with Simultaneous Pickup and Delivery Problem,LOLRPSPD),并通过改进野马算法进行求解。方法首先设计一种新的解码方式,使得原离散问题可以采用连续算法求解。之后,运用哈尔顿序列生成初始解,改进非线性进化概率因子,使用模拟二进制交叉,增加变异操作,以及精英保留、设置连续失败重新初始化等步骤,改进野马算法。最后,通过6组不同大小的算例将改进野马算法与原始野马算法、模拟退火算法、粒子群算法、遗传算法进行对比。结果针对中大型算例,改进野马算法远超原始野马算法。针对小型算例,在确保准确率的同时,改进野马算法对比各经典算法也在速度上具有优势。结论提出的LOLRPSD模型具备合理性,改进的野马算法针对选址路径问题具有较好的搜索能力。展开更多
研究了配送车辆载重量和工作时间有限,考虑货物装卸时间的多车次同时送货和取货的车辆路径问题(multi-trip vehicle routing problem with simultaneous deliveries and pickups,MTVRPSDP),建立了以配送车辆启动成本和车辆行驶成本之和...研究了配送车辆载重量和工作时间有限,考虑货物装卸时间的多车次同时送货和取货的车辆路径问题(multi-trip vehicle routing problem with simultaneous deliveries and pickups,MTVRPSDP),建立了以配送车辆启动成本和车辆行驶成本之和最小为目标的线性整数规划模型.将量子计算和基本蚁群算法相结合提出了求解MTVRPSDP的量子蚁群算法,该算法应用量子比特启发式因子改进了人工蚂蚁的转移概率,从而提高了算法的全局搜索能力和稳定性,有效改进了算法陷入局部最优的缺陷.算例分析表明:MTVRPSDP的线性整数规划模型在实际应用中是可行和有效的,而且相比于基本蚁群算法和文献中所给其他算法的计算结果,利用量子蚁群算法和MTVRPSDP的线性整数规划模型能够得到较好的满意解,安排的车辆配送路线更加经济合理.展开更多
研究了同时送取货的选址路径问题(location-routing problem with simultaneous pickup and delivery,LRPSPD),在同时送取货问题中,每个客户都有送货需求和取货需求,并且两种需求需要同时进行服务。在此条件下,建立了以仓库的选址成本...研究了同时送取货的选址路径问题(location-routing problem with simultaneous pickup and delivery,LRPSPD),在同时送取货问题中,每个客户都有送货需求和取货需求,并且两种需求需要同时进行服务。在此条件下,建立了以仓库的选址成本、车辆启用成本及运输成本等目标和最小的选址路径模型;针对该模型的特点,设计改进了一种混合免疫优化算法(hybrid immune algorithm,HIA)对该问题进行求解,运用贪心聚类算法生成初始解,利用原始免疫算法对抗体进行评价排序,由邻域搜索操作改进原始算法的免疫操作。最后,通过使用混合免疫优化算法与原始免疫优化算法、模拟退火算法、蚁群算法分别对案例进行求解和对比分析,验证了提出模型的可行性和算法的有效性。展开更多
文摘目的针对当前物流背景下普遍出现的送货公司外包、退换货频繁等问题,结合现有的碳排放政策,提出低碳背景下开放式同时送取货选址−路径模型(Low-Carbon Open Location-routing Problem with Simultaneous Pickup and Delivery Problem,LOLRPSPD),并通过改进野马算法进行求解。方法首先设计一种新的解码方式,使得原离散问题可以采用连续算法求解。之后,运用哈尔顿序列生成初始解,改进非线性进化概率因子,使用模拟二进制交叉,增加变异操作,以及精英保留、设置连续失败重新初始化等步骤,改进野马算法。最后,通过6组不同大小的算例将改进野马算法与原始野马算法、模拟退火算法、粒子群算法、遗传算法进行对比。结果针对中大型算例,改进野马算法远超原始野马算法。针对小型算例,在确保准确率的同时,改进野马算法对比各经典算法也在速度上具有优势。结论提出的LOLRPSD模型具备合理性,改进的野马算法针对选址路径问题具有较好的搜索能力。
文摘研究了配送车辆载重量和工作时间有限,考虑货物装卸时间的多车次同时送货和取货的车辆路径问题(multi-trip vehicle routing problem with simultaneous deliveries and pickups,MTVRPSDP),建立了以配送车辆启动成本和车辆行驶成本之和最小为目标的线性整数规划模型.将量子计算和基本蚁群算法相结合提出了求解MTVRPSDP的量子蚁群算法,该算法应用量子比特启发式因子改进了人工蚂蚁的转移概率,从而提高了算法的全局搜索能力和稳定性,有效改进了算法陷入局部最优的缺陷.算例分析表明:MTVRPSDP的线性整数规划模型在实际应用中是可行和有效的,而且相比于基本蚁群算法和文献中所给其他算法的计算结果,利用量子蚁群算法和MTVRPSDP的线性整数规划模型能够得到较好的满意解,安排的车辆配送路线更加经济合理.
文摘研究了同时送取货的选址路径问题(location-routing problem with simultaneous pickup and delivery,LRPSPD),在同时送取货问题中,每个客户都有送货需求和取货需求,并且两种需求需要同时进行服务。在此条件下,建立了以仓库的选址成本、车辆启用成本及运输成本等目标和最小的选址路径模型;针对该模型的特点,设计改进了一种混合免疫优化算法(hybrid immune algorithm,HIA)对该问题进行求解,运用贪心聚类算法生成初始解,利用原始免疫算法对抗体进行评价排序,由邻域搜索操作改进原始算法的免疫操作。最后,通过使用混合免疫优化算法与原始免疫优化算法、模拟退火算法、蚁群算法分别对案例进行求解和对比分析,验证了提出模型的可行性和算法的有效性。