随着自动驾驶技术的快速发展,4D毫米波雷达因其全天候适应性和抗干扰能力,成为同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的关键传感器。然而在隧道等封闭环境中,多径效应引发的虚警点云严重影响了雷达SLAM系统...随着自动驾驶技术的快速发展,4D毫米波雷达因其全天候适应性和抗干扰能力,成为同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的关键传感器。然而在隧道等封闭环境中,多径效应引发的虚警点云严重影响了雷达SLAM系统的定位精度与建图效果。针对这一问题,本文基于对隧道中的毫米波雷达点云数据特性和散射角特征的规律分析提出了一种全新的滑窗动态滤波算法。该方法结合了点云的空间统计特性与邻域密度检测方法剔除离群噪声点云,利用雷达点云粗配准获得先验估计位姿,结合雷达点云俯仰向和方位向的三维散射角特征,实现对真实目标点云数据的区分和聚类。随后使用随机采样一致性算法(Random Sample Consensus,RANSAC)拟合隧道墙壁平面并构建隧道墙面模型。通过引入动态滑窗更新策略,利用拟合的隧道墙面模型与先验估计位姿实时更新当前姿态节点到墙面边界距离阈值,使用距离阈值进一步消除隧道空间以外的虚警点云和噪声点云,并在因子图优化框架下完成全局位姿修正与局部地图更新。本研究在真实的隧道环境中采集多个不同场景的数据进行实验验证,实验结果证明本研究提出的方法在有效降低虚警点云干扰的同时,显著提高了定位精度和建图质量,且能在复杂环境中保持较高的稳定性。本研究为提高4D毫米波雷达SLAM在封闭环境中的鲁棒性提供了新的技术思路和实现路径。展开更多
环境感知与地下空间导航是煤矿智能化信息领域的重要研究方向,对实现无人化、全自动化、智能化的煤矿生产作业至关重要。随着第五代移动通信技术(5th generation mobile networks,5G)和毫米波成像雷达软硬件日益紧密结合与成熟,毫米波...环境感知与地下空间导航是煤矿智能化信息领域的重要研究方向,对实现无人化、全自动化、智能化的煤矿生产作业至关重要。随着第五代移动通信技术(5th generation mobile networks,5G)和毫米波成像雷达软硬件日益紧密结合与成熟,毫米波探测与通讯应用到更多领域。5G通讯技术依托高速率、低延时、高带宽的特点给现有的无线电通讯技术带来巨大的变革;同时,毫米波雷达相比激光雷达,低成本、抗干扰、三维点云(3 dimension point cloud,3D)数量相对激光点云数量少1~2个数量级的特点,使得其在地下环境3D成像及同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)领域得到越来越多的关注。基于5G通讯的V2X(Vehicle to Everything)技术结合毫米波SLAM导航,为煤矿机器人的自主导航提供新的解决方案。系统综述了当下煤矿机器人自主导航以及实现煤矿智能化所面临的问题;近期国内外毫米波成像最新进展;地下环境毫米波雷达模块组通讯与信号获取方法;高分辨率成像遇到的稀疏特征提取问题;稀疏点云的处理策略与算法评估;深度学习在毫米波稀疏点云处理中的研究现状与发展方向;SLAM算法应用于不同环境的研究现状及SLAM导航算法。归纳了煤矿地下环境中应用SLAM地图构建、路径规划及避障的困难和挑战,并对未来煤矿复杂环境下毫米波通讯与导航兼容并蓄的新应用提出了展望。展开更多
针对动态物体严重干扰同时定位与建图(SLAM)系统正常运行的问题,提出一种基于目标检测和特征点关联的动态视觉SLAM算法。首先,利用YOLOv5目标检测网络得到环境中潜在动态物体的信息,并基于简易目标跟踪对图像漏检进行补偿;其次,为解决...针对动态物体严重干扰同时定位与建图(SLAM)系统正常运行的问题,提出一种基于目标检测和特征点关联的动态视觉SLAM算法。首先,利用YOLOv5目标检测网络得到环境中潜在动态物体的信息,并基于简易目标跟踪对图像漏检进行补偿;其次,为解决单一特征点的几何约束方法易出现误判的问题,依据图像的位置信息和光流信息建立特征点关联,再结合极线约束判断关系网的动态性;再次,结合两种方法剔除图像中的动态特征点,并用剩余的静态特征点加权估计位姿;最后,对静态环境建立稠密点云地图。在TUM(Technical University of Munich)公开数据集上的对比和消融实验的结果表明,与ORB-SLAM2和DS-SLAM(Dynamic Semantic SLAM)相比,所提算法在高动态场景下的绝对轨迹误差(ATE)中的均方根误差(RMSE)分别至少降低了95.22%和5.61%。可见,所提算法在保证实时性的同时提高了准确性和鲁棒性。展开更多
文摘环境感知与地下空间导航是煤矿智能化信息领域的重要研究方向,对实现无人化、全自动化、智能化的煤矿生产作业至关重要。随着第五代移动通信技术(5th generation mobile networks,5G)和毫米波成像雷达软硬件日益紧密结合与成熟,毫米波探测与通讯应用到更多领域。5G通讯技术依托高速率、低延时、高带宽的特点给现有的无线电通讯技术带来巨大的变革;同时,毫米波雷达相比激光雷达,低成本、抗干扰、三维点云(3 dimension point cloud,3D)数量相对激光点云数量少1~2个数量级的特点,使得其在地下环境3D成像及同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)领域得到越来越多的关注。基于5G通讯的V2X(Vehicle to Everything)技术结合毫米波SLAM导航,为煤矿机器人的自主导航提供新的解决方案。系统综述了当下煤矿机器人自主导航以及实现煤矿智能化所面临的问题;近期国内外毫米波成像最新进展;地下环境毫米波雷达模块组通讯与信号获取方法;高分辨率成像遇到的稀疏特征提取问题;稀疏点云的处理策略与算法评估;深度学习在毫米波稀疏点云处理中的研究现状与发展方向;SLAM算法应用于不同环境的研究现状及SLAM导航算法。归纳了煤矿地下环境中应用SLAM地图构建、路径规划及避障的困难和挑战,并对未来煤矿复杂环境下毫米波通讯与导航兼容并蓄的新应用提出了展望。
文摘针对动态物体严重干扰同时定位与建图(SLAM)系统正常运行的问题,提出一种基于目标检测和特征点关联的动态视觉SLAM算法。首先,利用YOLOv5目标检测网络得到环境中潜在动态物体的信息,并基于简易目标跟踪对图像漏检进行补偿;其次,为解决单一特征点的几何约束方法易出现误判的问题,依据图像的位置信息和光流信息建立特征点关联,再结合极线约束判断关系网的动态性;再次,结合两种方法剔除图像中的动态特征点,并用剩余的静态特征点加权估计位姿;最后,对静态环境建立稠密点云地图。在TUM(Technical University of Munich)公开数据集上的对比和消融实验的结果表明,与ORB-SLAM2和DS-SLAM(Dynamic Semantic SLAM)相比,所提算法在高动态场景下的绝对轨迹误差(ATE)中的均方根误差(RMSE)分别至少降低了95.22%和5.61%。可见,所提算法在保证实时性的同时提高了准确性和鲁棒性。