为了提高锂离子电池用Cu-Sn-Sb合金负极材料的循环稳定性,采用分步电沉积的方式通过控制镀锑时间在铜集流体上制备了四种不同锡锑原子比的叠层Cu-Sn-Sb合金负极材料,采用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS...为了提高锂离子电池用Cu-Sn-Sb合金负极材料的循环稳定性,采用分步电沉积的方式通过控制镀锑时间在铜集流体上制备了四种不同锡锑原子比的叠层Cu-Sn-Sb合金负极材料,采用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS)以及充放电测试等手段对其结构、形貌和性能进行表征。结果表明:采用不同镀锑时间制备的电极材料形貌有明显差别;Sn/Sb原子比为1∶1的电极材料电化学性能较好。经200℃、12 h的热处理后,电极材料的循环稳定性得到改善,经40次循环后,放电比容量保持为330.9 m Ah/g,其电化学性能明显增强。展开更多
Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)...Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)O dis-solved in N,N-dimethylformamide,and were converted into Fe-Co embedded in N-doped porous carbon polyhedra by pyrolysis in a nitrogen atmosphere.During pyrolysis,the or-ganic ligands transformed into N-doped porous carbon which improved their structural stability and also their electrical contact with other materials.The Fe and Co are tightly bound together because of their encapsulation by the carbon nitride and are well dispersed in the carbon matrix,and improve the material’s conductivity and stability and provide additional capacity.When used as the anode for lithium-ion batteries,the material gives an initial capacity of up to 2230.7 mAh g^(-1)and a reversible capa-city of 1146.3 mAh g^(-1)is retained after 500 cycles at a current density of 0.5 A g^(-1),making it an excellent candidate for this purpose.展开更多
文摘为了提高锂离子电池用Cu-Sn-Sb合金负极材料的循环稳定性,采用分步电沉积的方式通过控制镀锑时间在铜集流体上制备了四种不同锡锑原子比的叠层Cu-Sn-Sb合金负极材料,采用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS)以及充放电测试等手段对其结构、形貌和性能进行表征。结果表明:采用不同镀锑时间制备的电极材料形貌有明显差别;Sn/Sb原子比为1∶1的电极材料电化学性能较好。经200℃、12 h的热处理后,电极材料的循环稳定性得到改善,经40次循环后,放电比容量保持为330.9 m Ah/g,其电化学性能明显增强。
文摘Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)O dis-solved in N,N-dimethylformamide,and were converted into Fe-Co embedded in N-doped porous carbon polyhedra by pyrolysis in a nitrogen atmosphere.During pyrolysis,the or-ganic ligands transformed into N-doped porous carbon which improved their structural stability and also their electrical contact with other materials.The Fe and Co are tightly bound together because of their encapsulation by the carbon nitride and are well dispersed in the carbon matrix,and improve the material’s conductivity and stability and provide additional capacity.When used as the anode for lithium-ion batteries,the material gives an initial capacity of up to 2230.7 mAh g^(-1)and a reversible capa-city of 1146.3 mAh g^(-1)is retained after 500 cycles at a current density of 0.5 A g^(-1),making it an excellent candidate for this purpose.