期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
热变形方式对2D70耐热铝合金组织与性能的影响 被引量:6
1
作者 李志辉 熊柏青 +4 位作者 张永安 王国军 李培跃 朱宝宏 李锡武 《材料导报》 EI CAS CSCD 北大核心 2011年第2期84-88,共5页
分别采用常规变形方式(直接挤压)、强变形方式(3次多方锻造与挤压变形相结合)制备了大规格2D70耐热铝合金棒材,利用金相显微镜、透射电镜、力学性能测试、电导率测试等手段对比分析了两种工艺所获得棒材的变形态、固溶态显微组织特征以... 分别采用常规变形方式(直接挤压)、强变形方式(3次多方锻造与挤压变形相结合)制备了大规格2D70耐热铝合金棒材,利用金相显微镜、透射电镜、力学性能测试、电导率测试等手段对比分析了两种工艺所获得棒材的变形态、固溶态显微组织特征以及195℃人工时效强化特性差异。结果表明,与传统直接挤压方式相比,采用强变形工艺所获得的基体组织相对均匀,合金中各类第二相破碎严重、分布合理;经强变形破碎的Al2CuMg、Al2Cu等可溶第二相可在固溶处理过程中充分回溶以提高时效强化潜力,同时,Al9FeNi、Al7Cu4Ni等难溶第二相的尺寸、形态与分布通过强变形得以合理调控,使得合金棒材在195℃人工时效的过时效阶段具有更优越的抗过时效能力,合金热稳定性较好。 展开更多
关键词 Al-Cu-Mg-Fe-Ni耐热铝合金强变形微观组织力学性能
在线阅读 下载PDF
镁锂合金强韧化在机械设计与制造中的运用
2
作者 王颖辉 《有色金属(冶炼部分)》 CAS 北大核心 2024年第6期I0003-I0003,共1页
镁锂合金强韧化在机械设计与制造中的运用是一个复杂且重要的研究领域,其涉及到材料科学、机械设计和制造工艺等多个方面.由彭翔、刘文才、吴国华编著,中南大学出版社2023年12月出版的《镁锂合金强韧化及腐蚀行为》一书,以Mg-xLi-3Al-2Z... 镁锂合金强韧化在机械设计与制造中的运用是一个复杂且重要的研究领域,其涉及到材料科学、机械设计和制造工艺等多个方面.由彭翔、刘文才、吴国华编著,中南大学出版社2023年12月出版的《镁锂合金强韧化及腐蚀行为》一书,以Mg-xLi-3Al-2Zn-0.5Y系合金为研究对象,系统研究不同Li含量、热处理和挤压对该系合金微观组织、力学性能、时效行为和腐蚀行为的影响规律及机制.研究结果为热稳定耐腐蚀镁锂合金设计提供理论指导,可推动镁锂合金在航天和电子产品等领域的进一步应用.研究者们深入探讨了镁锂合金的强韧化机制以及其在不同环境下的腐蚀行为,为镁锂合金在机械设计与制造中的应用提供了理论基础和实践指导. 展开更多
关键词 镁锂合金 强韧化 合金微观组织 机械设计与制造 时效行为 吴国华 电子产品 材料科学
在线阅读 下载PDF
Cu-RE-B-Mg合金在无氧铜制备过程中的净化作用及机理分析 被引量:2
3
作者 李刚 肖来荣 +1 位作者 赵小军 蔡圳阳 《热加工工艺》 CSCD 北大核心 2017年第1期49-52,共4页
在利用高质量铜米和废旧铜线生产无氧铜时,为了提高废旧铜线的利用率,本文通过在熔炼过程中添加铜稀土中间合金作为精炼剂,添加铜硼和铜镁中间合金作为脱氧剂,分析了Cu-RE-B-Mg合金的净化作用及其对铸造组织的影响,并研究了除杂净化机... 在利用高质量铜米和废旧铜线生产无氧铜时,为了提高废旧铜线的利用率,本文通过在熔炼过程中添加铜稀土中间合金作为精炼剂,添加铜硼和铜镁中间合金作为脱氧剂,分析了Cu-RE-B-Mg合金的净化作用及其对铸造组织的影响,并研究了除杂净化机理。结果表明,铜稀土中间合金可显著降低无氧铜中Zn、Pb、Al、S、Fe等杂质含量;铜硼和铜镁中间合金使无氧铜的含氧量降低至24 ppm,达到了低于30 ppm的要求;此外,由于少量残留的稀土铜化合物可作为形核的核心,精炼剂还具有细化晶粒的作用。 展开更多
关键词 无氧铜 净化 微观组织Cu-RE-B-Mg合金
在线阅读 下载PDF
Al-4Cu-1.3Mg-0.9Si合金的析出强化行为 被引量:2
4
作者 曾延琦 王锋 +4 位作者 熊柏青 张永安 李锡武 李志辉 刘红伟 《航空材料学报》 EI CAS CSCD 北大核心 2012年第3期1-4,共4页
通过硬度测试、差示扫描量热法(DSC)分析、拉伸性能测试和透射电镜(TEM)微观组织观察,研究了Al-4Cu-1.3Mg-0.9Si合金的析出强化行为。结果表明:合金具有较强的析出强化能力;合金在160~220℃下时效,随时效温度的升高,合金的时效响应速... 通过硬度测试、差示扫描量热法(DSC)分析、拉伸性能测试和透射电镜(TEM)微观组织观察,研究了Al-4Cu-1.3Mg-0.9Si合金的析出强化行为。结果表明:合金具有较强的析出强化能力;合金在160~220℃下时效,随时效温度的升高,合金的时效响应速率加快,时效峰值硬度有所下降;合金在190℃时效态时,其主要析出相为S相,在190℃/24h时效态合金中还发现少量的方块状相;合金经190℃/24h时效后其常温和高温抗拉强度较同等条件下制备、同等热处理状态下的Al-4Cu-1.3Mg合金有明显的提高。 展开更多
关键词 Al-Cu—Mg—Si合金 析出强化 微观组织 力学性能
在线阅读 下载PDF
Microstructural evolution and mechanical properties of AZ31 Mg alloy fabricated by a novel bifurcation-equal channel angular pressing
5
作者 HAN Ting-zhuang ZHANG Hua +6 位作者 YANG Mu-xuan WANG Li-fei LU Li-wei ZHANG De-chuang CAO Xia XU Ji BAI Jian-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期2961-2972,共12页
In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were... In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were first compressed into the die cavity,then sequentially flowed downward through a 90°corner and two 120°shear steps.The total strain of B-ECAP process could reach 3.924 in a single pass.The results of microstructure observation showed that DRX occurred at upsetting process in the die cavity and completed at position D.The grains were refined to 6.3μm at being extruded at 300℃ and grew obviously with the extrusion temperature increase.The shear tress induced by 900 corner and two 120°shear steps resulted in the basal poles of most grains tilted to extrusion direction(ED)by±25°.Compared with the original billets,the extruded sheets exhibited higher yield strengths(YS),which was mainly attributed to the grain refinement.The higher Schmid factor caused by ED-tilt texture resulted in a fracture elongation(FE)more than that of the original bar in ED,while was equivalent to that in transverse direction(TD).As the extrusion temperature increased,the variation of UTS and YS in ED and TD decreased gradually without ductility obviously decrease. 展开更多
关键词 AZ31 Mg alloy B-ECAP microstructure texture evolution mechanical properties
在线阅读 下载PDF
Impact of cooling rate on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy
6
作者 JIANG Ke-da LIAO Ze-xin +2 位作者 CHEN Ming-yang LIU Sheng-dan TANG Jian-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2225-2236,共12页
The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy ... The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy test,optical microscope,electron backscatter diffraction and scanning transmission electron microscope.With the decrease of cooling rate from 1700℃/s to 4℃/s,exfoliation corrosion resistance of the aged specimens decreases with rating changing from EA to EC and the maximum corrosion depth increasing from about 169.4μm to 632.1μm.Exfoliation corrosion tends to develop along grain boundaries in the specimens with cooling rates higher than about 31℃/s and along both grain boundaries and sub-grain boundaries in the specimens with lower cooling rates.The reason has been discussed based on the changes of the microstructure and microchemistry at grain boundaries and sub-grain boundaries due to slow cooling. 展开更多
关键词 7xxx aluminum alloy cooling rate exfoliation corrosion microstructure
在线阅读 下载PDF
《热加工艺》2006年总目录
7
《热加工工艺》 CSCD 北大核心 2006年第24期76-82,共7页
关键词 变形镁合金 可压力加工镁合金 合金板材 合金组织 复合材料 合金 轻有色金属合金 搅拌摩擦焊 合金微观组织 组织性能 激光熔覆层 铁硅金属间化合物 合金凝固组织 压铸模 压力铸造模 AZ 性能研究 显微组织 金相组织 目录 检索工具
在线阅读 下载PDF
Effects of sintering temperature and holding time on microstructure and mechanical properties of Ti-1Al-8V-5Fe prepared by spark plasma sintering 被引量:4
8
作者 LI Yun-zhe LIU Shi-feng +4 位作者 ZHANG Guang-xi LIU Wei YANG Xin LI Lan-jie WANG Yan 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1183-1194,共12页
Ti185 alloy is widely used in key industrial fields such as aerospace due to its excellent mechanical properties.The traditional method of preparing Ti185 alloy will inevitably appear“βfleck”,resulting in the decre... Ti185 alloy is widely used in key industrial fields such as aerospace due to its excellent mechanical properties.The traditional method of preparing Ti185 alloy will inevitably appear“βfleck”,resulting in the decrease of mechanical properties,and the high price of V element limits the wide application of Ti185.In this paper,a low-cost master alloy V-Fe powder is used,a dense block is prepared by spark plasma sintering(SPS)technology,and a high-performance Ti185 alloy is prepared by controlling the sintering parameters.XRD and SEM were used to investigate the phase and microstructure of the samples prepared under different parameters.The compressive strength and friction properties of the directly prepared samples were studied.The samples with a sintering temperature of 1350 ℃ and a holding time of 30 min exhibited the most excellent comprehensive performance,with the highest compressive strength and lowest friction coefficient of 1931.59 MPa and 0.47,respectively. 展开更多
关键词 spark plasma sintering Ti185 alloy MICROSTRUCTURE mechanical properties
在线阅读 下载PDF
Microstructure and mechanical properties of as-cast and extruded Mg–8Li–3Al–0.7Si alloy 被引量:7
9
作者 YANG Guo-qing PENG Xiao-dong +4 位作者 YANG Yan LI Meng-luan WEI Guo-bing SHAO Hong-yan WANG Bao 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第4期764-771,共8页
Mg–8Li–3Al–0.7Si alloy was prepared by casting and deformed by hot extrusion in this study.And the microstructure of as-cast and extruded specimens was analyzed with OM,XRD,SEM and EDS.Results show that the specime... Mg–8Li–3Al–0.7Si alloy was prepared by casting and deformed by hot extrusion in this study.And the microstructure of as-cast and extruded specimens was analyzed with OM,XRD,SEM and EDS.Results show that the specimens are composed ofα-Mg,β-Li,AlLi,MgLiAl2 and Mg2Si phases.In as-extruded specimen,the microstructure is refined and theβ-Li phase has the effect of coordination during deformation.After hot extrusion,Chinese script Mg2Si phase is crushed into block-like and distributes uniformly in the matrix.Mechanical properties results show that the strength and elongation are both improved after hot extrusion. 展开更多
关键词 Mg–Li alloy microstructure mechanical properties EXTRUSION silicon
在线阅读 下载PDF
Effect of platform temperature on microstructure and corrosion resistance of selective laser melted Al-Mg-Sc alloy plate 被引量:3
10
作者 LI Meng-jia LIAN Juan +4 位作者 CAO Ling-fei SHI Yun-jia ZHANG Guo-peng WANG Jie-fang ROMETSCH Paul 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期999-1014,共16页
The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction.... The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction. The results show that the corrosion resistance of the alloy plate built at platform temperature of 35 ℃ along height direction is basically the same due to a uniform microstructure;While the corrosion resistance of the alloy plate built at platform temperature of 200 ℃ along height direction is different. The evolution of microstructure and the distribution of secondary phases are investigated, and the results show that the Cu-rich phases in alloy play a key role on corrosion performance. At higher platform temperature, the cooling rate is relative slow and a certain degree of in situ ageing leads to the significantly different distribution of Cu-rich phases along grain boundary. Specimens built at the platform temperature of 200 ℃ are inclined to locate at the crossed grain boundary, rather than continuous segregation of Cu-rich phases along grain boundary that is built at platform temperature of 35 ℃. Therefore, the corrosion resistance of Al-3.40Mg-1.08Sc alloy plate manufactured at platform temperature of 200 ℃ is higher, and presents a gradually decreasing trend along height direction. 展开更多
关键词 selective laser melting aluminum alloys MICROSTRUCTURE corrosion resistance platform temperature
在线阅读 下载PDF
Effects of ultrasonic vibration on performance and microstructure of AZ31 magnesium alloy under tensile deformation 被引量:12
11
作者 XIE Zhen-dong GUAN Yan-jin +2 位作者 YU Xiao-hui ZHU Li-hua LIN Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1545-1559,共15页
Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried ou... Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried out. The stress–strain relationship, fracture modes of tensile specimens, microstructure and microhardness under different vibration conditions were analyzed, in order to study the effects of the ultrasonic vibration on microstructure and performance of AZ31 magnesium alloy under tensile deformation. The results showed that the different reductions of the true stress appeared under various ultrasonic vibration conditions, and the maximum decreasing range was 4.76%. The maximum microhardness difference among the 3 nodes selected along the specimen was HV 10.9. The fracture modes, plasticity and microstructure of AZ31 magnesium alloy also were affected by amplitude and action time of the ultrasonic vibration. The softening effect and the hardening effect occurred simultaneously when the ultrasonic vibration was applied. When the ultrasonic amplitude was 4.6 μm with short action time, the plastic deformation was dominated by twins and the softening effect was dominant. However, the twinning could be inhibited and the hardening effect became dominant in the case of high ultrasonic energy. 展开更多
关键词 ultrasonic vibration tensile test AZ31 magnesium alloy plastic behavior MICROSTRUCTURE
在线阅读 下载PDF
Improved mechanical and wear properties of Ti-35Nb-5Ta-7Zr-xSi alloys fabricated by selective electron beam melting for biomedical application 被引量:5
12
作者 YANG Kun WANG Jian +1 位作者 YANG Guang-yu JIA Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3825-3835,共11页
As the next generation biomedical titanium alloy, β-type titanium alloys are excellent candidates for biomedical applications due to the relative low elastic modulus and the contained non-toxic elements. However, the... As the next generation biomedical titanium alloy, β-type titanium alloys are excellent candidates for biomedical applications due to the relative low elastic modulus and the contained non-toxic elements. However, the relative low strength and unsatisfactory tribological property are undesired for load-bearing implant applications. In this study, 0-5 at% Si was added to the classic Ti-35Nb-5Ta-7Zr alloy to improve its strength and wear resistance, and the(Ti-35Nb-5Ta-7Zr)1-x-Six(x=0, 1 at% and 5 at%) alloy were fabricated by selective electron beam melting(SEBM)technology. The results indicated that Si addition significantly increases in compressive yield strength, which is mainly due to grain refinement strengthening. At the same time, the wear rate of the as-built TNTZ-5Si alloy in SBF solution was only ~30% of the Ti-6Al-4V alloy. Consequently, the TNTZ-5Si alloy showed an excellent combination of compressive yield strength, elastic modulus and wear resistance for potential load-bearing implant applications. 展开更多
关键词 β-type titanium alloys additive manufacturing MICROSTRUCTURE mechanical properties wear resistance
在线阅读 下载PDF
Effect of high-speed laser cladding on microstructure and corrosion resistance of CoCrFeNiMo_(0.2) high-entropy alloy 被引量:5
13
作者 MA Xu-feng SUN Yao-ning +4 位作者 CHENG Wang-jun CHONG Zhen-zeng HUANG Liu-fei MENG A-cong JIANG Li-heng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3436-3446,共11页
In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters... In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters of HLC are laser power of 880 W,scanning speed of 18 m/min,overlapping ratio of 60%,and powder feed speed of 3 r/min.Then,the surface roughness,microstructure,phase composition,element distribution,and electrochemical properties in 3.5 wt% NaCl solution of the coatings were analyzed,respectively.The local surface roughness of the CoCrFeNiMo_(0.2)HEA coating was found to be 15.53 μm.A distinct metallurgical bond could be observed between the coating and the substrate.Compared to the conventional laser cladding(CLC),the results of electrochemical tests showed that CoCrFeNiMo_(0.2)HEA coating exhibited a significant passivation.The corrosion current density of 5.4411 × 10^(-6)A·cm^(-2) and the corrosion potential of-0.7445 V for the HLC coating were calculated by the Tafel extrapolation method.The CLC coating’s corrosion current density and corrosion potential are 2.7083×10^(-5)A·cm^(-2) and-0.9685 V,respectively.The HLC coating shows a superior corrosion resistance,crucially due to the uniform and fine grains.Under various complex and harsh working conditions,this method can be widely used in the field of repairing and remanufacturing of corro sion-proof workpiece s. 展开更多
关键词 high-entropy alloy high-speed laser cladding MICROSTRUCTURE corrosion resistance
在线阅读 下载PDF
Influence of long-term isothermal aging on microstructure and creep rupture properties of Ni-base superalloy M4706 被引量:3
14
作者 DUAN Yu-hao ZHANG Peng +4 位作者 LI Jiao LI Bo SONG Xiao-long GONG Xiu-fang YANG Gong-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期325-333,共9页
After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa ar... After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa are investigated.It is found that as the aging time increases from 0 to 5000 h,the average diameter of coarseγ′increases from 241 to 484 nm,and the distribution of the carbides at grain boundaries changes from discontinuous to continuous.Moreover,experimental observations on the microstructures of all the crept specimens reveal that dislocation bypassing controls the creep deformation.Thus,it is concluded that the transitions in the microstructures result in the degeneration of the creep rupture properties of the experimental alloy with aging time. 展开更多
关键词 Ni-base superalloy isothermal aging MICROSTRUCTURE creep rupture properties
在线阅读 下载PDF
Microstructure and mechanical properties of AZ31 alloy ingot fabricated by semi-continuous casting 被引量:1
15
作者 李金柱 农登 +2 位作者 郑开宏 黎小辉 赵明纯 《Journal of Central South University》 SCIE EI CAS 2014年第8期2984-2990,共7页
The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that... The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that the chemical composition distributed homogeneously through the whole alloy ingot and the average grain size increased from the surface to the center. The results of the EDS and element face-scanning illustrated that the eutectic compounds mainly consisted of fl-Mg17Al12 and a small amount of fl-Mgl7(AlZn)12. Furthermore, slight improvements of the strength and ductility were observed from the center to the surface along the axial direction of the alloy ingot, while both the strength and elongation to failure of the samples along the radial direction are higher than that along the axial direction. The fine grain strengthening was the main contributors to the strength of the as-casted AZ31 alloy. 展开更多
关键词 semi-continuous casting method MICROSTRUCTURE mechanical properties fine grain strengthening
在线阅读 下载PDF
Microstructural evolution of 2026 aluminum alloy during homogenization 被引量:8
16
作者 JIANG Ding-bang PAN Qing-lin +2 位作者 HUANG Zhi-qi HU Quan LIU Zhi-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期490-498,共9页
The microstructural evolution of 2026 aluminum alloy during homogenization treatment was investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),differential ... The microstructural evolution of 2026 aluminum alloy during homogenization treatment was investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),differential scanning calorimetry(DSC)and X-ray diffraction(XRD).The results show that severe dendritic segregation exists in the as-cast 2026 alloy and the main secondary phases at grain boundary are S(Al2CuMg)andθ(Al2Cu)phases.Elements Cu,Mg and Mn distribute unevenly from grain boundary to the inside of as-cast alloy.With the increase of homogenization temperature or the prolongation of holding time,the residual phases gradually dissolve into the matrixα(Al)and all the elements become more homogenized.According to the results of microstructural evolution,differential scanning calorimetry and X-ray diffraction,the optimum homogenization parameter is at 490°C for 24 h,which is consistent with the result of homogenization kinetic analysis. 展开更多
关键词 2026 aluminum alloy dendritic segregation HOMOGENIZATION microstructure evolution homogenization kinetics
在线阅读 下载PDF
Effect of Li addition on mechanical properties and ageing precipitation behavior of extruded Al-3.0 Mg-0.5 Si alloy 被引量:3
17
作者 YANG Xiao-kun XIONG Bai-qing +6 位作者 LI Xi-wu YAN Li-zhen LI Zhi-hui ZHANG Yong-an LI Ya-nan WEN Kai LIU Hong-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2636-2646,共11页
The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),trans... The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images.The results show that the tensile strength of the Li-containing alloy can be significantly improved;however,the ductility is sharply decreased and the fracture mechanism changes from ductile fracture to intergranular fracture.The elasticity modulus of the Li-containing alloy increases by 11.6%compared with the base alloy.The microstructure observation shows that the Li addition can absolutely change the precipitation behavior of the base alloy,andδ′-Al_(3)Li phase becomes the main precipitates.Besides,β′′-Mg_(2)Si andδ′-Al_(3)Li dual phases precipitation can be visibly observed at 170℃ ageing for 100 h,although the quantity ofδ′-Al_(3)Li phase is more thanβ′′-Mg_(2)Si phase.The width of the precipitate-free zone(PFZ)of the Li-containing alloy is much wider at the over-ageing state than the base alloy,which has a negative impact on the ductile and results in the decrease of elongation. 展开更多
关键词 Al-3.0 Mg-0.5 Si alloy Li addition microstructure ageing behavior mechanical properties dynamic elasticity modulus
在线阅读 下载PDF
Microstructures,mechanical properties and compressive creep behaviors of as-cast Mg-5%Sn-(0-1.0)%Pb alloys 被引量:2
18
作者 王卿 陈云贵 +3 位作者 肖素芬 刘红梅 唐永柏 赵源华 《Journal of Central South University》 SCIE EI CAS 2011年第2期290-295,共6页
The microstructures, tensile properties and compressive creep behaviors of Mg-5%Sn-(0-1.0)%Pb (mass fraction) alloys were studied. The microstructures of the Mg-Sn-Pb alloys consist of dendritic a-Mg and Mg2Sn pha... The microstructures, tensile properties and compressive creep behaviors of Mg-5%Sn-(0-1.0)%Pb (mass fraction) alloys were studied. The microstructures of the Mg-Sn-Pb alloys consist of dendritic a-Mg and Mg2Sn phase. The addition of Pb can refine the size of Mg2Sn phase and grain size, reduce the amount of Mg2Sn phase at grain or inter-dendrite boundaries and change the distribution of Mg2Sn phase. Pb exists in the Mg2Sn phase or dissolves in a-Mg matrix. The mechanical properties of the tested alloys at room temperature are improved with the addition of Pb. When the Pb content is over 0.5%, the mechanical properties are decreased gradually. The Mg-5%Sn-0.5%Pb shows the best ultimate tensile strength and elongation, 174 MPa and 14.3%, respectively. However, the compressive creep resistance of the Mg-Sn-Pb alloys is much lower than that of the Mg-Sn binary alloy at 175℃ with applied load of 55 MPa, which means that Pb has negative effects on the compressive creep resistance of the as-cast Mg-Sn alloys. 展开更多
关键词 Mg-Sn-Pb alloy MICROSTRUCTURES mechanical properties compressive creep Mg2Sn phase
在线阅读 下载PDF
Influence of temperature on creep behavior,mechanical properties and microstructural evolution of an Al-Cu-Li alloy during creep age forming 被引量:3
19
作者 ZHOU Chang ZHAN Li-hua +2 位作者 LI He ZHAO Xing HUANG Ming-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2285-2294,共10页
The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa f... The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa for 20 h. Increasing temperature resulted in a noteworthy change in creep ageing behaviour, including a variation in creep curves, an improvement in creep rate during early creep ageing, and an increased creep strain. Tensile tests indicate that the specimen aged at higher temperature reached peak strength within a shorter time. Transmission electron microscopy(TEM) was employed to explore the effect of temperature on the microstructural evolution of the AA2198 during creep ageing deformation. Many larger dislocations and even tangled dislocation structures were observed in the sample aged at higher temperature. The number of T1 precipitates increased at higher ageing temperature at the same ageing time. Based on the analysed results, a new mechanism, considering the combined effects of the formation of larger dislocation structures induced by higher temperature and diffusion of solute atoms towards these larger or tangled dislocations, was proposed to explain the effect of temperature on microstructural evolution and creep behaviour. 展开更多
关键词 Al-Cu-Li alloys creep age forming mechanical properties MICROSTRUCTURE PRECIPITATION
在线阅读 下载PDF
Effects of interrupted ageing and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion behavior of Al-Mg-Si-Zn alloy 被引量:2
20
作者 TIAN Ai-qin XU Xue-hong +1 位作者 SUN Lin DENG Yun-lai 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期821-835,共15页
Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy... Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy has the lowest strength and the worst IGC resistance, while the T6I6 alloy has higher strength and better IGC resistance.What’ s more, the alloy treated by pre-rolling deformation has higher strength and better IGC resistance;and the alloy treated by the pre-asymmetry rolling achieves the highest strength, the best IGC resistance and lower elongation. The mechanical properties depend on microstructures such as the grain size, texture, dislocation density and precipitation, the grain boundary misorientation and grain boundary microstructure are responsible for the IGC resistance. 展开更多
关键词 Al-Mg-Si-Zn alloy interrupted ageing asymmetric rolling microstructure mechanical property intergranular corrosion property
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部