期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
面向施工机械的深度学习图像数据集合成方法 被引量:2
1
作者 卢昱杰 刘博 +1 位作者 刘金杉 赵宪忠 《建筑科学与工程学报》 CAS 北大核心 2022年第4期100-107,共8页
工程现场环境复杂,获取包含丰富信息的图像难度大且标注成本高,造成基于计算机视觉的深度学习施工机械图像数据集构建困难。为满足快速、高质量构建建筑工程领域施工机械深度学习图像数据集,提出一种基于三维建模引擎的施工机械图像生... 工程现场环境复杂,获取包含丰富信息的图像难度大且标注成本高,造成基于计算机视觉的深度学习施工机械图像数据集构建困难。为满足快速、高质量构建建筑工程领域施工机械深度学习图像数据集,提出一种基于三维建模引擎的施工机械图像生成与自动标注方法,并以挖掘机为例构建了名为SCED(Synthesized Construction Equipment Dataset)的挖掘机数据集。首先,采用三维建模引擎UE4对目标挖掘机设备进行模型构建,然后借助UnrealCV工具对原始模型进行多角度、多区域的图像采集,使用自编写模块实现自动语义分割与掩码图像生成,并完成图像的自动标注,最终生成包含10 000张图像的数据集。与现有公开机械数据集进行了目标尺寸、数量与构建工作量的对比,并比较了构建效率与成本,最后进行了图像数据集质量与效果验证。结果表明:该构建方法综合效率更高且成本更低,构建的SCED图像数据集丰富性和泛化能力更好,针对小目标物具有更好的检测效果;研究成果可为今后建筑施工领域深度学习图像数据集的构建提供参考依据。 展开更多
关键词 计算机视觉 深度学习 建筑施工 施工机械 合成数据集
在线阅读 下载PDF
藏汉双语场景图像数据集合成及文本检测方法
2
作者 郝玉胜 王维兰 +1 位作者 李金成 林强 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第4期592-604,共13页
为满足大量藏汉双语场景图像中的文字检测和识别的需求,合成数据集并训练深度学习模型,提出场景图像藏汉双语文本检测方法.首先,针对缺乏藏汉双语场景图像数据集的问题,提出基于轮廓检测和泊松图像编辑的合成方法,采用人工标注和自动化... 为满足大量藏汉双语场景图像中的文字检测和识别的需求,合成数据集并训练深度学习模型,提出场景图像藏汉双语文本检测方法.首先,针对缺乏藏汉双语场景图像数据集的问题,提出基于轮廓检测和泊松图像编辑的合成方法,采用人工标注和自动化合成方式生成了具有相当规模的藏汉双语场景图像数据集BiTCSD,其中包含合成图像87680幅、人工标注图像5550幅;其次,验证了使用合成数据集训练模型的有效性;最后,在不同数据集上训练了深度文本框连接网络CTPN,并在测试集上针对不同语种评价了模型的文本检测性能.实验结果表明:通过合成样本训练CTPN模型,能够使模型的文本检测指标大幅提升;训练后的CTPN能够以较高的准确率和召回率检测场景图像中的藏汉双语文本区域,针对藏语文本的检测准确率P、召回率R和F值分别为0.91,0.85和0.88;针对汉语文本的检测准确率P、召回率R和F值分别为0.89,0.83和0.86. 展开更多
关键词 场景文本检测 藏汉双语 合成数据集 深度学习
在线阅读 下载PDF
基于背景-前景组成式建模的电路板异常检测
3
作者 傅冰飞 陈同林 +3 位作者 许枫 朱麟 李斌 薛向阳 《计算机研究与发展》 北大核心 2025年第1期144-159,共16页
异常检测的目标是检测众多正常样本中的异常样本.在大数据时代,如何将异常检测应用于现实场景成为当下需要着重思考的问题之一.目前已有模型存在难以处理实际场景中遮挡、光照、色差等动态干扰,无法快速迁移应用场景等问题.基于此,提出... 异常检测的目标是检测众多正常样本中的异常样本.在大数据时代,如何将异常检测应用于现实场景成为当下需要着重思考的问题之一.目前已有模型存在难以处理实际场景中遮挡、光照、色差等动态干扰,无法快速迁移应用场景等问题.基于此,提出了一种基于背景-前景组成式建模的深度学习模型,用于检测电路板场景中的异常物体.首先通过特征提取网络将输入图像重构为不包含异常物体的干净背景图像,并通过跳层连接保留图像可能存在的动态干扰.得到重构背景后,通过空间变换网络提取到异常物体的位置信息,利用自编码器提取到异常物体外观、形状和存在的隐空间表示并重构出每个异常物体.将重构的异常物体和背景图像组合得到完整图像并通过对异常物体的存在表示给定阈值来实现异常检测.为了验证方法的有效性,从真实的电路板组装环境中收集数据,并模拟实际生产中标注有限的情景,从而创建用于分析的电路板异物数据集.此外,还在航道异物碎片数据集上进行实验验证.结果表明,提出的方法在该数据集上表现良好,能够检测出9个真实场景数据中的所有异常目标,漏检率低至0%,可以应用于现实世界的电路板组装场景. 展开更多
关键词 异常检测 合成数据集 组成式建模 生成式模型 多阶段训练
在线阅读 下载PDF
不确定性多维传感器数据的有效存储与查询方法
4
作者 张军 王永利 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第6期750-756,共7页
为解决传统数据库管理技术无法有效管理不确定性数据的问题,该文设计了一种多维数组树(MB树)。MB树是一种基于贝叶斯网络的图数据结构,以贝叶斯网络作为概率图模型解决存储和查询问题。对海量数据建模并响应查询。证明了可预测性和结构... 为解决传统数据库管理技术无法有效管理不确定性数据的问题,该文设计了一种多维数组树(MB树)。MB树是一种基于贝叶斯网络的图数据结构,以贝叶斯网络作为概率图模型解决存储和查询问题。对海量数据建模并响应查询。证明了可预测性和结构关联性。利用真实数据集和合成数据集对MB树的性能进行了测试。验证了具有潜在联合分布的MB树的编码准确度。与相似的图模型比较,采用MB树的查询处理效率平均可提升约3倍。 展开更多
关键词 多维传感器 数据 存储 查询 多维数组树 贝叶斯网络 数据结构 概率图模型 真实数据 合成数据集
在线阅读 下载PDF
差异感知的室内场景动态光照在线估计方法
5
作者 刘玉婉 郭智溢 +1 位作者 邢冠宇 刘艳丽 《计算机应用》 CSCD 北大核心 2024年第S2期184-191,共8页
为了提高增强现实场景中虚实融合的真实感,提出一种差异感知的室内场景动态光照在线估计方法。与现有方法直接计算光照参数或生成光照贴图不同,该方法通过估计不同光照条件下场景的光照差异图像实现对于室内场景中光照的动态更新,从而... 为了提高增强现实场景中虚实融合的真实感,提出一种差异感知的室内场景动态光照在线估计方法。与现有方法直接计算光照参数或生成光照贴图不同,该方法通过估计不同光照条件下场景的光照差异图像实现对于室内场景中光照的动态更新,从而更准确地获取场景动态光照并保留场景中的细节信息。所提方法的卷积神经网络(CNN)包括2个子网络,分别是低动态范围(LDR)图像特征提取网络和光照估计网络。整体网络结构以一张场景内所有主要光源开启时采集的高动态范围(HDR)全景光照贴图作为初始光照贴图,并把该光照贴图与光照变化后的有限视界的LDR图像共同作为输入。首先,基于AlexNet搭建CNN提取LDR图像特征,并在光照估计网络共享编码器中连接这些特征与HDR光照贴图特征;其次,利用U-Net结构,通过引入注意力机制,实现对光照差异图像和光源掩膜的估计,进而实现对场景动态光照的更新。在全景光照贴图的数值评估中,所提方法的均方误差(MSE)指标相较于Gardner方法、Garon方法、EMLight、Guo方法以及耦合的双StyleGAN全景合成网络StyleLight分别降低约79%、65%、38%、17%、87%,其他性能也有所提升。以上从定性和定量方面均证明了所提方法的有效性。 展开更多
关键词 室内场景 动态光照 深度学习 合成数据集 高动态范围
在线阅读 下载PDF
基于深度卷积神经网络的运动目标检测方法 被引量:8
6
作者 卢裕秋 孙金玉 马世伟 《系统仿真学报》 CAS CSCD 北大核心 2019年第11期2275-2280,共6页
针对运动目标检测中的间歇性运动问题,设计了一个深度卷积神经网络MONet。在缺乏训练数据集的情况下,利用仿射变换生成一个合成数据集Go Chairs,并在此基础上进行网络的训练和测试。结果表明,训练后的MONet能够有效地根据像素点之间的... 针对运动目标检测中的间歇性运动问题,设计了一个深度卷积神经网络MONet。在缺乏训练数据集的情况下,利用仿射变换生成一个合成数据集Go Chairs,并在此基础上进行网络的训练和测试。结果表明,训练后的MONet能够有效地根据像素点之间的对应关系检测出运动的目标。传统的运动目标检测数据集CDnet和I2R被用于测试以验证该网络的泛化性能。针对目标的间歇性运动问题,MONet与经典方法进行了定性和定量的比较。实验结果证明了该网络在检测间歇性运动的目标时的优越性。 展开更多
关键词 运动目标检测 间歇性运动 深度卷积神经网络 合成数据集
在线阅读 下载PDF
欧洲多个耦合气候模式对东亚冬季气候的预测性能研究 被引量:3
7
作者 张刚 《气象学报》 CAS CSCD 北大核心 2012年第4期690-703,共14页
在短期气候预测方法中,多模式集合预测作为一种实用方法得到了广泛的研究。利用DEMETER多模式集合预测系统1980—2001年的回报试验,研究了欧洲7个耦合模式对东亚地区(0°—60°N,70°—140°E)冬季大气环流和气候异常... 在短期气候预测方法中,多模式集合预测作为一种实用方法得到了广泛的研究。利用DEMETER多模式集合预测系统1980—2001年的回报试验,研究了欧洲7个耦合模式对东亚地区(0°—60°N,70°—140°E)冬季大气环流和气候异常的预测效能。研究的气候要素是冬季500hPa高度场、850hPa风场、表面气温场和降水场。集合平均(EM)是最基本的多模式集合构建方法。为了进一步订正模式预测的误差,基于经验正交函数分解进行订正,产生"合成数据集",并利用该数据集进行合成集合平均或合成超级集合(SEM/SSE)。研究表明,东亚地区冬季气候异常的模式预测效能热带高于中高纬度地区,海洋高于内陆。多模式集合平均和合成集合平均或合成超级集合均从整体上对东亚地区冬季气候异常的预测效能有一定程度的提高,体现了其相对于7个单一模式的优势。两类不同的多模式集合方法对预测结果也有一定的影响,其中,合成集合平均或合成超级集合对冬季500hPa高度场、850hPa风场和降水场异常的预测效能优于集合平均;但是对于冬季表面气温场异常的预测,集合平均优于合成集合平均或合成超级集合。 展开更多
关键词 短期气候预测 多模式 合成数据集 可预测性
在线阅读 下载PDF
基于光传输模型学习的红外和可见光图像融合网络设计 被引量:2
8
作者 颜敏 罗晓清 张战成 《计算机科学》 CSCD 北大核心 2022年第4期215-220,共6页
红外和可见光图像的融合可以获得更为全面、丰富的信息。由于没有真实融合图像作参考,现有的融合图像数据集缺少融合图像作为监督条件,基于监督学习的训练方法无法应用于图像融合,现有的融合网络都是尽可能地在两个模态间找到平衡,因此... 红外和可见光图像的融合可以获得更为全面、丰富的信息。由于没有真实融合图像作参考,现有的融合图像数据集缺少融合图像作为监督条件,基于监督学习的训练方法无法应用于图像融合,现有的融合网络都是尽可能地在两个模态间找到平衡,因此提出一种基于环境光传输模型的多模态图像合成方法。基于NYU-Depth有标签数据集和其深度标注信息合成一组带有参考融合图像的红外和可见光多模态数据集,在条件GAN中设计边缘和细节损失函数,用合成的多模态图像数据集以端到端的方式训练该网络,最终获得一个融合网络。该网络可以使融合图像较好地保留可见光图像的细节和红外图像的目标特征,锐化红外图像热辐射目标的边界。在TNO公开数据集上与主流的IFCNN,DenseFuse,FusionGAN等方法对比,通过主观和客观的图像质量评价检验了该方法的有效性。 展开更多
关键词 图像融合 光传输模型 合成数据集 GAN
在线阅读 下载PDF
基于像素投票的人手全局姿态估计 被引量:2
9
作者 林晋钢 李东年 +1 位作者 陈成军 赵正旭 《光学精密工程》 EI CAS CSCD 北大核心 2022年第19期2379-2389,共11页
针对人手全局姿态估计误差较大的问题,提出了一种基于像素投票的人手全局姿态估计方法。建立编码器-解码器结构卷积神经网络产生语义信息与姿态信息特征图;分别利用语义分割分支、姿态估计分支从特征图中获取人手像素位置与逐像素姿态投... 针对人手全局姿态估计误差较大的问题,提出了一种基于像素投票的人手全局姿态估计方法。建立编码器-解码器结构卷积神经网络产生语义信息与姿态信息特征图;分别利用语义分割分支、姿态估计分支从特征图中获取人手像素位置与逐像素姿态投票,最后汇总人手像素的姿态投票获得投票结果。为解决人手全局姿态数据集较少的问题,通过OpenSceneGraph(OSG)三维渲染引擎和三维人手模型建立人手数据集合成程序。该程序可生成不同手势下的人手深度图像与全局姿态标签。实验结果表明,基于像素投票的人手全局姿态估计方法的误差均值为5.036°,可以准确地从深度图像中估计人手全局姿态。 展开更多
关键词 人手姿态估计 卷积神经网络 深度学习 深度图像 合成数据集
在线阅读 下载PDF
基于多尺度注意力半监督学习的老照片划痕修复 被引量:1
10
作者 高伟 吴顺 《计算机工程》 CAS CSCD 北大核心 2022年第10期245-251,261,共8页
老照片由于长时间的磨损或保存不当,会出现照片的划痕损伤。随着深度学习在图像重建中的应用,基于深度学习方法能够在纹理修复的基础上获取图像的语义信息并预测语义内容,使老照片修复的整体效果更加符合客观事实,但利用深度学习进行老... 老照片由于长时间的磨损或保存不当,会出现照片的划痕损伤。随着深度学习在图像重建中的应用,基于深度学习方法能够在纹理修复的基础上获取图像的语义信息并预测语义内容,使老照片修复的整体效果更加符合客观事实,但利用深度学习进行老照片划痕修复缺乏学习所需数据集。提出一种基于半监督学习的老照片划痕自动修复的方法,创建划痕合成数据集SynOld用于网络训练,同时搜集真实的划痕老照片用于训练和测试,将合成数据集和真实老照片加入网络学习,两者共享网络参数,并通过鉴别器来区分网络生成图像与真实图像。对于合成数据集有监督的分支采用均方差损失、感知损失和对抗损失约束训练,对于真实老照片无监督的分支采用总变差损失控制训练。实验结果表明,相比于多尺度特征注意力网络的监督学习方法,该方法在合成数据集SynOld和真实老照片上都具有较好的修复效果。 展开更多
关键词 老照片划痕 图像修复 多尺度注意力 半监督学习 划痕合成数据集
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部