期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
基于遗传算法改进的少数类样本合成过采样技术的非平衡数据集分类算法 被引量:19
1
作者 霍玉丹 谷琼 +1 位作者 蔡之华 袁磊 《计算机应用》 CSCD 北大核心 2015年第1期121-124,139,共5页
针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍... 针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍率,并将这些采样倍率取值的组合编码为种群中的个体;然后,循环使用GA的选择、交叉、变异等算子对种群进行优化,在达到停机条件时获得采样倍率取值的最优组合;最后,根据找到的最优组合对非平衡数据集进行SMOTE采样。在10个典型的非平衡数据集上进行的实验结果表明:与SMOTE算法相比,GASMOTE在F-measure值上提高了5.9个百分点,在G-mean值上提高了1.6个百分点;与Borderline-SMOTE算法相比,GASMOTE在F-measure值上提高了3.7个百分点,在G-mean值上提高了2.3个百分点。该方法可作为一种新的解决非平衡数据集分类问题的过采样技术。 展开更多
关键词 非平衡数据集 分类 少数类样本合成过采样技术 采样倍率 遗传算法
在线阅读 下载PDF
构造性覆盖算法的SMOTE过采样方法 被引量:10
2
作者 严远亭 朱原玮 +2 位作者 吴增宝 张以文 张燕平 《计算机科学与探索》 CSCD 北大核心 2020年第6期975-984,共10页
如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数... 如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数类样本进行过采样仍然是一个值得研究的问题。此外,被孤立的少数样本在提高模型性能方面的潜在能力也没有得到足够的重视。针对上述问题,提出了基于构造性覆盖算法(CCA)的过采样技术CMOTE。CMOTE提供了两种不同策略下选择关键样本的方法:基于覆盖内样本个数的方法与基于覆盖密度的方法。在12个典型的不平衡数据集上验证CMOTE算法的性能。实验结果表明,CMOTE算法在总体上优于对比方法,并且通过强化关键样本对模型性能的影响增强了模型的泛化能力。 展开更多
关键词 不平衡数据 过采样技术 合成少数过采样技术(smote) 构造性覆盖算法(CCA)
在线阅读 下载PDF
面向不平衡图像数据的对抗自编码器过采样算法 被引量:2
3
作者 职为梅 常智 +1 位作者 卢俊华 耿正乾 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第11期4208-4218,共11页
许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量... 许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量较低。为进一步提高过采样算法在不平衡图像中生成样本的质量和训练的稳定性,该文基于生成对抗网络和自编码器的思想提出一种融合自编码器和生成对抗网络的过采样算法(BAEGAN)。首先在自编码器中引入一个条件嵌入层,使用预训练的条件自编码器初始化GAN以稳定模型训练;然后改进判别器的输出结构,引入一种融合焦点损失和梯度惩罚的损失函数以减轻类不平衡的影响;最后从潜在向量的分布映射中使用合成少数类过采样技术(SMOTE)来生成高质量的图像。在4个图像数据集上的实验结果表明该算法在生成图像质量和过采样后的分类性能上优于具有辅助分类器的条件生成对抗网络(ACGAN)、平衡生成对抗网络(BAGAN)等过采样算法,能有效解决图像数据中的类不平衡问题。 展开更多
关键词 不平衡图像数据 过采样 生成对抗网络 对抗自编码器 合成少数过采样技术
在线阅读 下载PDF
面向非平衡多分类问题的二次合成QSMOTE方法 被引量:3
4
作者 韩明鸣 郭虎升 王文剑 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期1-13,共13页
近年来非平衡多分类数据的学习问题在机器学习和数据挖掘领域备受关注,上采样技术成为解决数据不平衡问题的主要方法,然而已有的上采样技术仍有很多的不足,例如新合成的少数类样本仍可能分布在对应少数类样本的原始区域内,不能有效改善... 近年来非平衡多分类数据的学习问题在机器学习和数据挖掘领域备受关注,上采样技术成为解决数据不平衡问题的主要方法,然而已有的上采样技术仍有很多的不足,例如新合成的少数类样本仍可能分布在对应少数类样本的原始区域内,不能有效改善数据分布的不平衡情况.此外,若原始样本中不同类别样本分布存在重叠,则新合成的样本会更容易偏离到其他类样本分布中,从而造成过泛化现象,影响少数类样本的分类精度.为解决上述问题,提出一种二次合成的上采样方法(Quadratic Synthetic Minority Over-sampling Technique,QSMOTE).首先通过少数类样本的支持度选择包含重要信息的样本来进行第一次合成,然后通过分析指定少数类样本质心的邻域内样本分布情况来调整第二次样本合成范围,并最终进行第二次合成.在UCI和MNIST数据集上的实验结果表明,QSMOTE不仅可以改善数据分布的不平衡问题,而且可以尽可能地减少过泛化现象,特别是对少数类样本的分类准确率有大幅提升. 展开更多
关键词 多类非平衡问题 过泛化 重叠 合成少数类上采样技术(smote)
在线阅读 下载PDF
SMOTE类算法研究综述 被引量:10
5
作者 王晓霞 李雷孝 林浩 《计算机科学与探索》 CSCD 北大核心 2024年第5期1135-1159,共25页
合成少数类过采样技术(SMOTE)因能有效处理少数类样本已成为处理不平衡数据的主流方法之一,而且许多SMOTE改进算法已被提出,但目前已有的调研极少考虑到流行的算法级改进方法。因此对现有SMOTE类算法进行更全面的分析与总结。首先详细... 合成少数类过采样技术(SMOTE)因能有效处理少数类样本已成为处理不平衡数据的主流方法之一,而且许多SMOTE改进算法已被提出,但目前已有的调研极少考虑到流行的算法级改进方法。因此对现有SMOTE类算法进行更全面的分析与总结。首先详细阐述了SMOTE方法的基本原理,然后主要从数据级、算法级两个层面系统性地梳理分析SMOTE类算法,并介绍数据级和算法级混合改进的新思路。数据级改进是在预处理时通过不同操作删除或添加数据来平衡数据分布;算法级改进不会改变数据分布,主要通过修改或创建算法来加强对少数类样本的关注度。二者相比,数据级方法应用受限更少,算法级改进的算法鲁棒性普遍更高。为了更全面地提供SMOTE类算法的基础研究材料,最后列出常用数据集、评价指标,给出未来可能尝试进行的研究思路,以更好地应对不平衡数据问题。 展开更多
关键词 不平衡数据 合成少数过采样技术(smote) 过采样 监督学习
在线阅读 下载PDF
小样本下基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断
6
作者 葛平淑 王朝阳 +3 位作者 王阳 张涛 薛红涛 夏晨迪 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期1-9,共9页
轮毂电机复杂多变的运行环境可能导致轴承故障而危及电动车辆行驶安全,为解决传统故障诊断方法在小样本条件下识别精度低的问题,提出一种基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断方法。首先,通过合成少数过采样技术(SMOTE)扩展训练数据... 轮毂电机复杂多变的运行环境可能导致轴承故障而危及电动车辆行驶安全,为解决传统故障诊断方法在小样本条件下识别精度低的问题,提出一种基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断方法。首先,通过合成少数过采样技术(SMOTE)扩展训练数据集,生成与真实样本分布相似的故障样本,并使用主成分分析(PCA)优化其时域和频域的特征。然后,通过引入非线性收敛因子和Levy飞行策略改进传统的灰狼优化算法(GWO),使用改进的灰狼优化算法(IGWO)优化随机森林(RF)模型的参数。最后,基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断模型实现故障状态的识别,并在轮毂电机试验台架上进行了实验验证。结果表明,所提出的轮毂电机轴承故障诊断方法在7种转速工况下平均准确率均超过96%,具有高精度和稳定性。与遗传算法(GA)、粒子群优化算法(PSO)、GWO优化RF相比,提出的IGWO-RF模型在3种小样本训练集下的诊断准确率均超过90%,且准确率均明显高于其他3个对比算法,能够有效实现小样本条件下的轮毂电机轴承故障诊断。 展开更多
关键词 轮毂电机 轴承 合成少数过采样技术(smote) 改进灰狼优化算法(IGWO) 随机森林(RF) 故障诊断
在线阅读 下载PDF
基于SMOTE-UVE-SVM的小麦种子纯度高光谱图像检测 被引量:3
7
作者 朱潘雨 黄敏 赵鑫 《激光技术》 CAS CSCD 北大核心 2024年第2期281-287,共7页
为了解决基于高光谱成像技术的小麦种子纯度检测过程中样本不均衡及波段信息冗余导致纯度检测模型性能下降的问题,提出了一种融合合成少数类过采样技术(SMOTE)、非信息变量剔除(UVE)和支持向量机(SVM)的种子纯度高光谱检测模型。该模型... 为了解决基于高光谱成像技术的小麦种子纯度检测过程中样本不均衡及波段信息冗余导致纯度检测模型性能下降的问题,提出了一种融合合成少数类过采样技术(SMOTE)、非信息变量剔除(UVE)和支持向量机(SVM)的种子纯度高光谱检测模型。该模型利用SMOTE算法对小麦种子少数类(杂质)样本进行扩充,改善样本的不均衡性;同时利用UVE对高维的高光谱特征进行选择,并构建SVM模型作为分类器,以进一步提高分类的性能。结果表明,5类小麦种子的平均准确率、精确率和负样本检出率分别达到95.98%、94.94%和89.32%,较传统方法分别提高了3.89%、7.18%和12.42%。所提出的方法在基于高光谱成像技术的小麦种子纯度检测中具有较好的应用前景。 展开更多
关键词 光谱学 高光谱成像技术 合成少数过采样技术 非信息变量剔除 种子纯度
在线阅读 下载PDF
基于LLE-DBSCAN-SMOTE数据处理的隧洞岩爆预测
8
作者 范成强 夏元友 +1 位作者 张宏伟 黄建 《中国安全科学学报》 CSCD 北大核心 2024年第12期140-148,共9页
为解决岩爆预测中预测指标关联以及原始数据存在离群点与数据不平衡等问题,提出基于局部线性嵌入(LLE)-基于密度的带噪声应用空间聚类(DBSCAN)-合成少数类过采样(SMOTE)数据处理的岩爆预测方法。首先,选取围岩最大切向应力σ_(θ)、岩... 为解决岩爆预测中预测指标关联以及原始数据存在离群点与数据不平衡等问题,提出基于局部线性嵌入(LLE)-基于密度的带噪声应用空间聚类(DBSCAN)-合成少数类过采样(SMOTE)数据处理的岩爆预测方法。首先,选取围岩最大切向应力σ_(θ)、岩石单轴抗压强度σ_(c)、岩石单轴抗拉强度σ_(t)、弹性应变能指数W_(et)、脆性系数σ_(c)/σ_(t)、应力系数σ_(θ)/σ_(c)和表征围岩应力梯度的应力集度值β构建岩爆预测指标体系;其次,采用LLE算法进行数据降维处理以消除指标间的交叉关联影响,引入DBSCAN算法去除数据离群点;然后,引入SMOTE技术进行数据平衡化;最后,分别采用决策树(DT)、随机森林(RF)与梯度提升树(GBDT)算法构建3类岩爆预测模型,对比分析数据处理前后数据训练模型的预测精度,并通过江边水电站引水隧洞实测岩爆数据进行工程验证。结果表明:预测指标由原始数据的7维降至4维,以及采用分级离群值处理后的3类算法模型的预测准确率皆为同类模型中最高,江边水电站工程岩爆预测验证了数据处理后的模型预测准确率明显高于基于原始岩爆数据建立的同类模型。 展开更多
关键词 局部线性嵌入(LLE) 基于密度的带噪声应用空间聚类(DBSCAN) 合成少数过采样(smote) 数据处理 岩爆预测
在线阅读 下载PDF
样本不平衡条件下煤矿突水水源识别——以谢桥煤矿为例
9
作者 王彦彬 闫晓杉 《安全与环境学报》 北大核心 2025年第7期2553-2561,共9页
为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条... 为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条谢桥煤矿水化学数据进行分析,首先对样本数据进行标准化处理和主成分分析(Principal Component Analysis, PCA),将数据集划分为训练集和测试集,对训练集中少数类样本采用SMOTE法生成新的样本,然后采用改进混沌哈里斯鹰优化(Chaos Harris Hawks Optimization, CHHO)算法结合十折交叉验证优化支持向量机惩罚因子C和径向基函数(Radial Basis Function, RBF)核的参数γ,根据优化结果建立突水水源识别模型,对测试集中突水水源进行识别。将该方法与朴素贝叶斯、随机森林所得结果进行比较,结果显示,采用本方法对测试集识别结果准确性优于其他两种方法,表明该方法在突水水源识别上具有良好的实用性和有效性。 展开更多
关键词 安全工程 突水水源识别 主成分分析 合成少数过采样技术 混沌哈里斯鹰优化算法 支持向量机
在线阅读 下载PDF
基于改进SMOTE的非平衡数据集分类研究 被引量:19
10
作者 王超学 潘正茂 +2 位作者 董丽丽 马春森 张星 《计算机工程与应用》 CSCD 2013年第2期184-187,245,共5页
针对SMOTE(Synthetic Minority Over-sampling Technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法(SSMOTE)。该算法的关键是将支持度概念和轮盘赌选择技术引入到SMOTE中,并充分利用了异类近邻的分布信息,实现了对少... 针对SMOTE(Synthetic Minority Over-sampling Technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法(SSMOTE)。该算法的关键是将支持度概念和轮盘赌选择技术引入到SMOTE中,并充分利用了异类近邻的分布信息,实现了对少数类样本合成质量和数量的精细控制。将SSMOTE与KNN(K-Nearest Neighbor)算法结合来处理不平衡数据集的分类问题。通过在UCI数据集上与其他重要文献中的相关算法进行的大量对比实验表明,SSMOTE在新样本的整体合成效果上表现出色,有效提高了KNN在非平衡数据集上的分类性能。 展开更多
关键词 非平衡数据集 分类 支持度 轮盘赌选择 合成少数过采样技术(smote)
在线阅读 下载PDF
面向不平衡数据集的改进型SMOTE算法 被引量:26
11
作者 王超学 张涛 马春森 《计算机科学与探索》 CSCD 2014年第6期727-734,共8页
针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使... 针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使用交叉、变异算子实现对合成样本质量的控制。结合GA-SMOTE与SVM(support vector machine)算法来处理不平衡数据的分类问题。UCI数据集上的大量实验表明,GA-SMOTE在新样本的整体合成效果上表现出色,有效提高了SVM在不平衡数据集上的分类性能。 展开更多
关键词 不平衡数据集 分类 遗传算子 少数类样本合成过采样技术(smote) SYNTHETIC MINORITY OVER-SAMPLING technique (smote)
在线阅读 下载PDF
基于SMOTE算法和条件生成对抗网络的到港航班延误分类预测 被引量:7
12
作者 刘博 卢婷婷 +1 位作者 张兆宁 张健斌 《科学技术与工程》 北大核心 2021年第34期14843-14852,共10页
由于航班延误数据集类别分布不均,传统分类器的性能受到一定程度的制约。为了能够对到港航班延误情况进行精准预测,提出了一种基于合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)算法和条件生成对抗网络(condi... 由于航班延误数据集类别分布不均,传统分类器的性能受到一定程度的制约。为了能够对到港航班延误情况进行精准预测,提出了一种基于合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)算法和条件生成对抗网络(conditional generative adversarial nets,CGAN)的航班延误预测模型。首先,利用SMOTE算法对原始数据集进行上采样,并融合经过训练的CGAN生成指定样本数据集,缓解原始数据集中某些类别样本量少和数据非平衡等问题;再次,采用XGBoost模型在4种模式训练集上进行训练和超参数寻优;最后,以K近邻、支持向量机和随机森林为基准模型进行性能对比分析。经试验分析,通过分类器在融合样本集的训练,整体上可以在一定程度上提高模型的泛化性,尤其在轻度延误和中度延误类别中提升较为明显,与不采用融合方法比较,宏平均下的Precision、Recall、F_(1)-score值分别提升了0.16、0.29、0.24个百分点。实验结果表明,该方法能够有效地对航班延误非平衡数据进行建模,在保持模型整体性能较高的前提下,能够显著地提升少数类的预测能力,可以为空管、航空公司和机场等提供决策依据。 展开更多
关键词 航班延误 非平衡数据集 合成少数过采样技术(smote)算法 条件生成对抗网络 XGBoost模型 分类问题
在线阅读 下载PDF
基于改进SMOTE的不平衡数据挖掘方法研究 被引量:31
13
作者 杨智明 乔立岩 彭喜元 《电子学报》 EI CAS CSCD 北大核心 2007年第B12期22-26,共5页
少类样本合成过采样技术(SMOTE)是一种新型的过采样方法,能够有效地处理不平衡数据分类问题,但SMOTE在产生合成样本的过程中,存在一定的盲目性.因此本文提出一种改进的过采样方法一自适应SMOTE,根据样本集内部分布特性,自适应调... 少类样本合成过采样技术(SMOTE)是一种新型的过采样方法,能够有效地处理不平衡数据分类问题,但SMOTE在产生合成样本的过程中,存在一定的盲目性.因此本文提出一种改进的过采样方法一自适应SMOTE,根据样本集内部分布特性,自适应调整SMOTE方法中近邻选择策略,控制合成样本的质量.算法分析和仿真结果表明,文中提出的方法在不影响计算复杂度的前提下,有效地提高了分类算法的整体分类准确率。 展开更多
关键词 不平衡数据集 少类样本合成过采样技术 自适应smote 合成样本 近邻选择策略
在线阅读 下载PDF
一种基于SVM的非均衡数据集过采样方法 被引量:17
14
作者 张忠林 冯宜邦 赵中恺 《计算机工程与应用》 CSCD 北大核心 2020年第23期220-228,共9页
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on... 针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。 展开更多
关键词 不平衡数据 支持向量机(SVM) 过采样 样本权重 合成少数过采样技术(smote)
在线阅读 下载PDF
基于主动学习SMOTE的非均衡数据分类 被引量:23
15
作者 张永 李卓然 刘小丹 《计算机应用与软件》 CSCD 北大核心 2012年第3期91-93,162,共4页
少数类样本合成过采样技术(SMOTE)是一种典型的过采样数据预处理方法,它能够有效平衡非均衡数据,但会带来噪音等问题,影响分类精度。为解决此问题,借助主动学习支持向量机的分类性能,提出一种基于主动学习SMOTE的非均衡数据分类方法 ALS... 少数类样本合成过采样技术(SMOTE)是一种典型的过采样数据预处理方法,它能够有效平衡非均衡数据,但会带来噪音等问题,影响分类精度。为解决此问题,借助主动学习支持向量机的分类性能,提出一种基于主动学习SMOTE的非均衡数据分类方法 ALSMOTE。由于主动学习支持向量机采用基于距离的主动选择最佳样本的学习策略,因此能够主动选择非均衡数据中的有价值的多数类样本,舍弃价值较小的样本,从而提高运算效率,改进SMOTE带来的问题。首先运用SMOTE方法均衡小部分样本,得到初始分类器;然后利用主动学习策略调整分类器精度。实验结果表明,该方法有效提高了非均衡数据的分类准确率。 展开更多
关键词 主动学习 不平衡数据集 少数类样本合成过采样技术 支持向量机
在线阅读 下载PDF
基于改进Smote-GBDT算法的岩爆预测模型 被引量:6
16
作者 宋英华 江晨 +1 位作者 李墨潇 齐石 《中国安全科学学报》 CAS CSCD 北大核心 2023年第9期25-32,共8页
为准确预测岩爆等级,确保施工人员和设备安全,首先,从岩爆机制、数据和算法角度,分析埋深(D)、单轴抗压强度(UCS)、单轴抗拉强度(UTS)、岩石脆性指数(B_(1)、B_(2))、围岩最大切向应力(MTS)、应力集中系数(SCF)和弹性变形能指数(W_(et))... 为准确预测岩爆等级,确保施工人员和设备安全,首先,从岩爆机制、数据和算法角度,分析埋深(D)、单轴抗压强度(UCS)、单轴抗拉强度(UTS)、岩石脆性指数(B_(1)、B_(2))、围岩最大切向应力(MTS)、应力集中系数(SCF)和弹性变形能指数(W_(et))8个指标,建立岩爆预测指标体系;其次,针对岩爆样本存在的数据不均衡问题,引进托梅克联系(Tomek Link)对欠采样方法,改进合成少数类过采样(Smote)算法,对岩爆训练样本进行混合过采样;最后,构建SmoteTomek-梯度提升树(GBDT)岩爆预测模型,以38组数据验证模型的有效性,并与其他模型进行对比。结果表明:SmoteTomek-GBDT的准确率为92.1%,较未采样提升5.3%,Smote采样提升10.5%,优于随机过采样模型,并且避免跨等级的岩爆误判。 展开更多
关键词 岩爆预测 梯度提升树(GBDT)算法 合成少数过采样(smote)算法 岩爆指标 托梅克联系(Tomek Link)
在线阅读 下载PDF
融合nmODE的术后肺部并发症预测模型
17
作者 熊立鹏 徐修远 +2 位作者 牛颢 陈楠 章毅 《智能系统学报》 北大核心 2025年第1期198-205,共8页
为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码... 为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码,并提取其特征重要性。然后,使用长短时记忆神经网络对数据的相关特征依赖性进行分析,并提取处理后的特征。最后,利用nmODE的记忆和学习能力,对提取的特征进行深入分析,并得出最终的预测结果。通过实验评估,在肺部术后并发症数据集中,证明了提出模型的效果优于现有模型,同时可以为预测肺部手术后并发症的发生提供更准确的结果。 展开更多
关键词 疾病预测 异构表格数据 神经记忆常微分方程 极限梯度提升 长短时记忆神经网络 合成少数过采样技术 类别不平衡 病人预后
在线阅读 下载PDF
非平衡技术在高速网络入侵检测中的应用 被引量:3
18
作者 赵月爱 陈俊杰 穆晓芳 《计算机应用》 CSCD 北大核心 2009年第7期1806-1808,1812,共4页
针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的... 针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的数据进行学习建模,供在线部分检测。在讨论非平衡数据处理的各种采样技术基础上,采用改进后的过抽样少数样本合成过采样技术(SMOTE)对网络数据进行预处理,采用AdaBoost、随机森林算法等进行分类。另外对特征选取等方面进行了实验,结果表明SMOTE过抽样可提高各少数类的检测,随机森林算法分类效果好而且建模所用的时间稳定。 展开更多
关键词 高速网络 入侵检测 非平衡数据 少数样本合成过采样技术 集成学习 ADABOOST算法 随机森林算法
在线阅读 下载PDF
利用采样安全系数的多类不平衡过采样算法 被引量:4
19
作者 董明刚 刘明 敬超 《计算机科学与探索》 CSCD 北大核心 2020年第10期1776-1786,共11页
传统的过采样算法在处理多类不平衡问题时容易出现过度泛化和类别重叠,从而降低了分类性能。为了提高多类不平衡学习性能,提出了一种利用采样安全系数的多类不平衡过采样(SSCMIO)算法。首先为了防止过度泛化,采用近邻采样安全系数为那... 传统的过采样算法在处理多类不平衡问题时容易出现过度泛化和类别重叠,从而降低了分类性能。为了提高多类不平衡学习性能,提出了一种利用采样安全系数的多类不平衡过采样(SSCMIO)算法。首先为了防止过度泛化,采用近邻采样安全系数为那些会造成过度泛化的邻域分配一个较小的权重。然后考虑到样本点的全局特性,采用反向近邻采样安全系数防止新合成的样本点侵入到其他类别区域,减轻类别之间的重叠问题。最后以C4.5决策树作为基分类器,将SSCMIO算法与7种典型的过采样算法进行了对比实验。在16个公开的真实数据集上,SSCMIO算法在准确率、召回率、F-measure、MG、MAUC这5个指标上均能取得11个以上的最优值,在5个指标上最大提升分别是0.4818、0.3053、0.3420、0.2664、0.1307。实验结果表明SSCMIO算法相比其他7种算法可以取得更好的分类性能。 展开更多
关键词 采样安全系数 过采样 合成少数技术 多类不平衡问题
在线阅读 下载PDF
基于SMOTE和深度信念网络的异常检测 被引量:21
20
作者 沈学利 覃淑娟 《计算机应用》 CSCD 北大核心 2018年第7期1941-1945,共5页
针对现有海量非平衡数据集中少数类别样本入侵检测率低的问题,提出了一种基于合成少数类过采样技术(SMOTE)和深度信念网络(DBN)的异常检测(SMOTE-DBN)方法。首先,用SMOTE技术增加了少数类别样本的样本数;然后在预处理后的较平衡数据集上... 针对现有海量非平衡数据集中少数类别样本入侵检测率低的问题,提出了一种基于合成少数类过采样技术(SMOTE)和深度信念网络(DBN)的异常检测(SMOTE-DBN)方法。首先,用SMOTE技术增加了少数类别样本的样本数;然后在预处理后的较平衡数据集上,用非监督的受限玻尔兹曼机(RBM)对预处理后的高维数据进行特征降维;其次,用反向传播(BP)算法微调模型参数,获得预处理后数据的较优低维表示;最后通过softmax分类器对较优低维数据进行分类。KDD1999数据集仿真实验表明,SMOTE优化处理能够提高模型对少数类别样本的检测率,在相同数据集上,SMOTE-DBN方法与DBN方法、支持向量机(SVM)方法相比,检测率分别提高了3.31个百分点和7.34个百分点,误报率分别降低了1.11个百分点和2.67个百分点。 展开更多
关键词 合成少数过采样技术 深度信念网络 受限玻尔兹曼机 逻辑回归 入侵检测
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部