期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
基于遗传算法改进的少数类样本合成过采样技术的非平衡数据集分类算法 被引量:20
1
作者 霍玉丹 谷琼 +1 位作者 蔡之华 袁磊 《计算机应用》 CSCD 北大核心 2015年第1期121-124,139,共5页
针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍... 针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍率,并将这些采样倍率取值的组合编码为种群中的个体;然后,循环使用GA的选择、交叉、变异等算子对种群进行优化,在达到停机条件时获得采样倍率取值的最优组合;最后,根据找到的最优组合对非平衡数据集进行SMOTE采样。在10个典型的非平衡数据集上进行的实验结果表明:与SMOTE算法相比,GASMOTE在F-measure值上提高了5.9个百分点,在G-mean值上提高了1.6个百分点;与Borderline-SMOTE算法相比,GASMOTE在F-measure值上提高了3.7个百分点,在G-mean值上提高了2.3个百分点。该方法可作为一种新的解决非平衡数据集分类问题的过采样技术。 展开更多
关键词 非平衡数据集 分类 少数类样本合成过采样技术 采样倍率 遗传算法
在线阅读 下载PDF
面向不平衡图像数据的对抗自编码器过采样算法 被引量:2
2
作者 职为梅 常智 +1 位作者 卢俊华 耿正乾 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第11期4208-4218,共11页
许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量... 许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量较低。为进一步提高过采样算法在不平衡图像中生成样本的质量和训练的稳定性,该文基于生成对抗网络和自编码器的思想提出一种融合自编码器和生成对抗网络的过采样算法(BAEGAN)。首先在自编码器中引入一个条件嵌入层,使用预训练的条件自编码器初始化GAN以稳定模型训练;然后改进判别器的输出结构,引入一种融合焦点损失和梯度惩罚的损失函数以减轻类不平衡的影响;最后从潜在向量的分布映射中使用合成少数类过采样技术(SMOTE)来生成高质量的图像。在4个图像数据集上的实验结果表明该算法在生成图像质量和过采样后的分类性能上优于具有辅助分类器的条件生成对抗网络(ACGAN)、平衡生成对抗网络(BAGAN)等过采样算法,能有效解决图像数据中的类不平衡问题。 展开更多
关键词 不平衡图像数据 过采样 生成对抗网络 对抗自编码器 合成少数过采样技术
在线阅读 下载PDF
融合nmODE的术后肺部并发症预测模型
3
作者 熊立鹏 徐修远 +2 位作者 牛颢 陈楠 章毅 《智能系统学报》 北大核心 2025年第1期198-205,共8页
为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码... 为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码,并提取其特征重要性。然后,使用长短时记忆神经网络对数据的相关特征依赖性进行分析,并提取处理后的特征。最后,利用nmODE的记忆和学习能力,对提取的特征进行深入分析,并得出最终的预测结果。通过实验评估,在肺部术后并发症数据集中,证明了提出模型的效果优于现有模型,同时可以为预测肺部手术后并发症的发生提供更准确的结果。 展开更多
关键词 疾病预测 异构表格数据 神经记忆常微分方程 极限梯度提升 长短时记忆神经网络 合成少数过采样技术 类别不平衡 病人预后
在线阅读 下载PDF
样本不平衡条件下煤矿突水水源识别——以谢桥煤矿为例
4
作者 王彦彬 闫晓杉 《安全与环境学报》 北大核心 2025年第7期2553-2561,共9页
为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条... 为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条谢桥煤矿水化学数据进行分析,首先对样本数据进行标准化处理和主成分分析(Principal Component Analysis, PCA),将数据集划分为训练集和测试集,对训练集中少数类样本采用SMOTE法生成新的样本,然后采用改进混沌哈里斯鹰优化(Chaos Harris Hawks Optimization, CHHO)算法结合十折交叉验证优化支持向量机惩罚因子C和径向基函数(Radial Basis Function, RBF)核的参数γ,根据优化结果建立突水水源识别模型,对测试集中突水水源进行识别。将该方法与朴素贝叶斯、随机森林所得结果进行比较,结果显示,采用本方法对测试集识别结果准确性优于其他两种方法,表明该方法在突水水源识别上具有良好的实用性和有效性。 展开更多
关键词 安全工程 突水水源识别 主成分分析 合成少数过采样技术 混沌哈里斯鹰优化算法 支持向量机
在线阅读 下载PDF
构造性覆盖算法的SMOTE过采样方法 被引量:11
5
作者 严远亭 朱原玮 +2 位作者 吴增宝 张以文 张燕平 《计算机科学与探索》 CSCD 北大核心 2020年第6期975-984,共10页
如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数... 如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数类样本进行过采样仍然是一个值得研究的问题。此外,被孤立的少数样本在提高模型性能方面的潜在能力也没有得到足够的重视。针对上述问题,提出了基于构造性覆盖算法(CCA)的过采样技术CMOTE。CMOTE提供了两种不同策略下选择关键样本的方法:基于覆盖内样本个数的方法与基于覆盖密度的方法。在12个典型的不平衡数据集上验证CMOTE算法的性能。实验结果表明,CMOTE算法在总体上优于对比方法,并且通过强化关键样本对模型性能的影响增强了模型的泛化能力。 展开更多
关键词 不平衡数据 过采样技术 合成少数过采样技术(SMOTE) 构造性覆盖算法(CCA)
在线阅读 下载PDF
非平衡技术在高速网络入侵检测中的应用 被引量:3
6
作者 赵月爱 陈俊杰 穆晓芳 《计算机应用》 CSCD 北大核心 2009年第7期1806-1808,1812,共4页
针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的... 针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的数据进行学习建模,供在线部分检测。在讨论非平衡数据处理的各种采样技术基础上,采用改进后的过抽样少数样本合成过采样技术(SMOTE)对网络数据进行预处理,采用AdaBoost、随机森林算法等进行分类。另外对特征选取等方面进行了实验,结果表明SMOTE过抽样可提高各少数类的检测,随机森林算法分类效果好而且建模所用的时间稳定。 展开更多
关键词 高速网络 入侵检测 非平衡数据 少数样本合成过采样技术 集成学习 ADABOOST算法 随机森林算法
在线阅读 下载PDF
一种基于SVM的非均衡数据集过采样方法 被引量:17
7
作者 张忠林 冯宜邦 赵中恺 《计算机工程与应用》 CSCD 北大核心 2020年第23期220-228,共9页
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on... 针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。 展开更多
关键词 不平衡数据 支持向量机(SVM) 过采样 样本权重 合成少数过采样技术(SMOTE)
在线阅读 下载PDF
面向不平衡数据的特征子空间增强的异质集成学习
8
作者 陈丽芳 白云 +1 位作者 施永辉 代琪 《计算机工程与科学》 北大核心 2025年第5期940-950,共11页
对于不平衡数据,传统分类器趋向于保证多数类的准确率,而牺牲少数类的准确率,造成算法的整体性能下降。针对这一问题,提出一种面向不平衡数据的特征子空间增强的异质集成学习算法HEL-FSA。首先利用XGBoost算法学习特征的重要性,并选择... 对于不平衡数据,传统分类器趋向于保证多数类的准确率,而牺牲少数类的准确率,造成算法的整体性能下降。针对这一问题,提出一种面向不平衡数据的特征子空间增强的异质集成学习算法HEL-FSA。首先利用XGBoost算法学习特征的重要性,并选择重要的特征,形成数据集的特征子空间;其次使用SMOTE算法在特征子空间中生成新样本,获得更加平衡的训练数据;最后,采用逻辑回归、决策树、多层感知器、支持向量机和XGBoost这5种基模型,并使用if_any算法融合异质基模型。在9个不平衡数据集上的实验结果验证了该算法的可行性,同时,将提出的算法用于宫颈癌风险预测,增强了其对宫颈癌风险的理解和预测能力。 展开更多
关键词 不平衡数据 特征选择 集成学习 合成少数过采样技术
在线阅读 下载PDF
基于HEOA-XGBoost组合模型的边坡稳定性预测
9
作者 祁云 白晨浩 +3 位作者 秦凯 段宏飞 李绪萍 汪伟 《中国安全科学学报》 北大核心 2025年第9期137-144,共8页
为预防边坡失稳安全事故发生,针对边坡失稳的不确定性及影响因素的复杂性等问题,提出一种基于人类进化优化算法(HEOA)优化极端梯度提升(XGBoost)的组合模型,以预测边坡稳定性。首先分析影响边坡失稳的主控因素,选取边坡岩体的6项影响因... 为预防边坡失稳安全事故发生,针对边坡失稳的不确定性及影响因素的复杂性等问题,提出一种基于人类进化优化算法(HEOA)优化极端梯度提升(XGBoost)的组合模型,以预测边坡稳定性。首先分析影响边坡失稳的主控因素,选取边坡岩体的6项影响因素建立边坡稳定性预测指标体系;其次利用极差标准化统一样本量纲,并采用合成少数类过采样技术(SMOTE)平衡样本等级分布;然后通过HEOA优化XGBoost模型的最大深度、学习率、子样本比例、列样本比例和最小损失;最后利用准确率、精确率、召回率、F_(1)分数和科恩卡帕系数综合评价所建模型的预测结果,并将该模型应用于具体工程实例。结果表明:经HEOA优化后XGBoost模型的最大深度、学习率、子样本比例、列样本比例和最小损失分别为6、0.5838、0.4615、0.5846和0.0244时效果凸显;HEOA-XGBoost组合模型预测边坡稳定性状态相比于其他智能算法优化的XGBoost模型和单一XGBoost模型,其各评价指标均有所提升,表明该模型预测边坡稳定性状态具有较高的精准度和泛化性。 展开更多
关键词 边坡稳定性 人类进化优化算法(HEOA) 极端梯度提升(XGBoost) 极差标准化 合成少数过采样技术(SMOTE)
在线阅读 下载PDF
数据不平衡情况下的柴油机故障诊断方法 被引量:3
10
作者 毕凤荣 郭明智 +3 位作者 毕晓阳 汤代杰 沈鹏飞 黄盟 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第8期810-820,共11页
由于强调整体分类的准确率,机器学习方法在数据不平衡情况下的柴油机故障诊断效果不佳.因此,本文提出一种改进合成少数过采样技术(SMOTE)与机器学习技术相结合的故障诊断方法.首先对SMOTE算法进行改进,采用k近邻算法滤除多数类中的噪声... 由于强调整体分类的准确率,机器学习方法在数据不平衡情况下的柴油机故障诊断效果不佳.因此,本文提出一种改进合成少数过采样技术(SMOTE)与机器学习技术相结合的故障诊断方法.首先对SMOTE算法进行改进,采用k近邻算法滤除多数类中的噪声样本,从而减少各种故障类别之间的重叠.同时,使用k-means算法确定少数类稀疏度和采样权重,减轻类内不平衡.然后,使用改进SMOTE算法平衡柴油机故障数据,并利用机器学习方法进行最终故障诊断.在二维数据集上的实验表明,改进SMOTE算法能有效减轻原始数据中存在的类重叠和类内不平衡问题.柴油机故障诊断实验表明,改进SMOTE算法生成的故障样本能更好地模拟原始故障样本,使用改进SMOTE算法能提高故障诊断方法的准确率. 展开更多
关键词 数据不平衡 故障诊断 合成少数过采样技术 柴油机 振动信号
在线阅读 下载PDF
针对不平衡数据的过采样和随机森林改进算法 被引量:39
11
作者 张家伟 郭林明 杨晓梅 《计算机工程与应用》 CSCD 北大核心 2020年第11期39-45,共7页
针对数据不平衡带来的少数类样本识别率低的问题,提出通过加权策略对过采样和随机森林进行改进的算法,从数据预处理和算法两个方面降低数据不平衡对分类器的影响。数据预处理阶段应用合成少数类过采样技术(Synthetic Minority Oversampl... 针对数据不平衡带来的少数类样本识别率低的问题,提出通过加权策略对过采样和随机森林进行改进的算法,从数据预处理和算法两个方面降低数据不平衡对分类器的影响。数据预处理阶段应用合成少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)降低数据不平衡度,每个少数类样本根据其相对于剩余样本的欧氏距离分配权重,使每个样本合成不同数量的新样本。算法改进阶段利用Kappa系数评价随机森林中决策树训练后的分类效果,并赋予每棵树相应的权重,使分类能力更好的树在投票阶段有更大的投票权,提高随机森林算法对不平衡数据的整体分类性能。在KEEL数据集上的实验表明,与未改进算法相比,改进后的算法对少数类样本分类准确率和整体样本分类性能有所提升。 展开更多
关键词 数据不平衡 合成少数过采样技术(SMOTE) Kappa系数 随机森林
在线阅读 下载PDF
基于卷积神经网络的液化预测模型及可解释性分析 被引量:3
12
作者 龙潇 孙锐 郑桐 《岩土力学》 EI CAS CSCD 北大核心 2024年第9期2741-2753,共13页
常规液化判别方法通常是半经验方法,存在人为因素干扰,成功率及均衡性不佳。现有的机器学习方法缺乏足够的样本支撑,存在一定的局限性。通过整合液化数据集,选取修正标准贯击数、细粒含量、土层深度、地下水位深度、总上覆应力、有效上... 常规液化判别方法通常是半经验方法,存在人为因素干扰,成功率及均衡性不佳。现有的机器学习方法缺乏足够的样本支撑,存在一定的局限性。通过整合液化数据集,选取修正标准贯击数、细粒含量、土层深度、地下水位深度、总上覆应力、有效上覆应力、门槛加速度、循环剪应力比、剪切波速、震级与地表峰值加速度11个液化特征建立卷积神经网络(convolutional neural network,简称CNN)模型。引入边界合成少数过采样技术消除不平衡数据集的影响。将CNN模型与随机森林模型、逻辑回归模型、支持向量机模型、极致梯度提升模型和规范方法进行对比,并结合沙普利加性解释(SHapley Additive exPlanations,简称SHAP)分析输入特征对预测结果的影响趋势。结果表明,CNN模型准确率达92.58%,各项指标均优于其他4种机器学习模型和规范方法。对SHAP结果分析可知,修正标贯击数小于15的土层液化概率较高,循环剪应力比CSR小于0.25的土层更不易液化。各因素的影响规律均符合现有认知,预测模型合理可靠。 展开更多
关键词 机器学习 液化预测 卷积神经网络 边界合成少数过采样技术 沙普利加性解释(SHAP)
在线阅读 下载PDF
针对样本类不平衡的深度残差网络电力系统暂态稳定评估方法 被引量:5
13
作者 刘颂凯 党喜 +3 位作者 崔梓琪 杨超 阮肇华 袁铭洋 《智慧电力》 北大核心 2024年第1期116-123,共8页
系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造... 系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造所需的新样本,改善样本类不平衡问题,并减少噪声的影响;然后,基于深度残差网络构建电力系统暂态稳定评估模型,解决梯度消失导致的模型性能退化问题,提高模型的鲁棒性和准确性;最后,在新英格兰10机39节点和47机140节点系统上的仿真结果表明,所提方法能减小噪声干扰、降低不平衡数据集所带来的影响和减少计算复杂度。 展开更多
关键词 暂态稳定评估 噪声问题 样本类分布不平衡 改进合成少数过采样技术 深度残差网络
在线阅读 下载PDF
一种基于随机森林的OFDM系统自适应算法 被引量:1
14
作者 王波 刘潇然 +2 位作者 熊俊 辜方林 张晓瀛 《信号处理》 CSCD 北大核心 2024年第6期1007-1018,共12页
针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间... 针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间隔和循环前缀长度取值,本文提出了基于随机森林的OFDM系统自适应算法。随机森林算法基于集成的思想,能够有效处理高维度数据,并且具有高效率、高准确率和强泛化能力等优势,可以在复杂的数据场景下进行有效的分类。通过提取通信过程中信噪比、用户移动速度、最大多普勒频率和均方根时延扩展等信道特征与OFDM系统的子载波间隔和循环前缀长度组成训练样本,利用随机森林算法创建了OFDM系统参数多分类模型。所提模型可以根据输入的信道特征,实现OFDM系统子载波间隔和循环前缀长度的自适应分配。同时,针对训练样本主要集中在少数几个系统参数类别的情况,利用合成少数类过采样技术对较少样本数的类别进行扩充,满足了随机森林算法对训练样本类别平衡化的需求,进一步提高了算法的分类准确率。相比传统的自适应算法,所提算法具有更高的分类准确率和模型泛化能力。分析和仿真结果表明,与子载波间隔和循环前缀长度固定的OFDM系统相比,本文所提出的自适应算法能够准确选择出最优的系统参数,可以有效地减轻信道中符号间干扰和子载波间干扰的影响,从而在整个信噪比范围上提供最大的平均频谱效率。基于随机森林的OFDM系统自适应算法能够动态地分配子载波间隔和循环前缀长度,增强OFDM系统的通信质量和抗干扰能力,实现在不同信道环境下的可靠传输。 展开更多
关键词 正交频分复用 合成少数过采样技术 随机森林 自适应算法
在线阅读 下载PDF
滑坡易发性评价中样本不均衡问题处理研究 被引量:4
15
作者 田尤 高波 +4 位作者 殷红 李元灵 张佳佳 陈龙 李洪梁 《水文地质工程地质》 CAS CSCD 北大核心 2024年第6期171-181,共11页
滑坡易发性评价中,样本不均衡问题的不同处理方案通常会带来评价结果的大量不确定性。针对这一问题,以藏东昌都市部分县(区)为研究区,构建滑坡/非滑坡样本不均衡数据集,采用不处理、下采样和合成少数类过采样(synthetic minority oversa... 滑坡易发性评价中,样本不均衡问题的不同处理方案通常会带来评价结果的大量不确定性。针对这一问题,以藏东昌都市部分县(区)为研究区,构建滑坡/非滑坡样本不均衡数据集,采用不处理、下采样和合成少数类过采样(synthetic minority oversampling technique,SMOTE)3种处置方案,运用逻辑回归方法分别构建滑坡易发性评价模型。基于ROC曲线、准确度、精确率、召回率、漏检率等评价指标,采用综合评价指标F_(1)′同数对模型分类的精度进行验证。结果表明:数据处理成均衡数据集(过采样/下采样)建立的模型效果较不处理数据建立的模型效果有了大幅提升,F_(1)′同数的值最大提高了53.17%;在下采样、过采样两种数据处理方案中,过采样方法比下采样方法F_(1)′分数的值提高了16.30%,表明过采样方法对处理样本不均衡数据问题方面具有较好效果。研究成果可为滑坡预测和地质灾害预测前的数据集处理提供参考,为进一步提高区域防灾减灾水平提供理论与技术支持。 展开更多
关键词 滑坡易发性 合成少数过采样技术 评价模型 昌都市 样本不均衡数据
在线阅读 下载PDF
不均衡小样本下的设备状态与寿命预测 被引量:1
16
作者 陈扬 刘勤明 郑伊寒 《计算机集成制造系统》 EI CSCD 北大核心 2024年第1期217-226,共10页
针对面向小样本不均衡设备健康监测数据时AdaBoost处理效果差的问题,提出了基于裁剪过采样新增AdaBoost算法的设备健康状态分析以及寿命预测模型。首先,基于AdaBoost计算出样本权值分布和容量,根据样本最大权值与样本个数生成改进裁剪系... 针对面向小样本不均衡设备健康监测数据时AdaBoost处理效果差的问题,提出了基于裁剪过采样新增AdaBoost算法的设备健康状态分析以及寿命预测模型。首先,基于AdaBoost计算出样本权值分布和容量,根据样本最大权值与样本个数生成改进裁剪系数,选择性地对权值大于裁剪系数的样本进行处理从而提高计算效率。其次,通过类k近邻法则过滤出错分类样本权值,随后引入合成少数类过采样技术提升该种类样本权值个数,有效规避迭代过程中不均衡数据集可能引起的过拟合问题。最后,通过对设备运行状态进行准确分类并拟合出与时间相关的设备寿命曲线预测设备寿命。算例结果表明,所提模型能够有效分析出不均衡数据下的设备健康状况,同时也可以对剩余寿命进行有效预测。 展开更多
关键词 小样本 不均衡数据 ADABOOST算法 合成少数过采样技术 剩余寿命预测
在线阅读 下载PDF
SMOTE类算法研究综述 被引量:13
17
作者 王晓霞 李雷孝 林浩 《计算机科学与探索》 CSCD 北大核心 2024年第5期1135-1159,共25页
合成少数类过采样技术(SMOTE)因能有效处理少数类样本已成为处理不平衡数据的主流方法之一,而且许多SMOTE改进算法已被提出,但目前已有的调研极少考虑到流行的算法级改进方法。因此对现有SMOTE类算法进行更全面的分析与总结。首先详细... 合成少数类过采样技术(SMOTE)因能有效处理少数类样本已成为处理不平衡数据的主流方法之一,而且许多SMOTE改进算法已被提出,但目前已有的调研极少考虑到流行的算法级改进方法。因此对现有SMOTE类算法进行更全面的分析与总结。首先详细阐述了SMOTE方法的基本原理,然后主要从数据级、算法级两个层面系统性地梳理分析SMOTE类算法,并介绍数据级和算法级混合改进的新思路。数据级改进是在预处理时通过不同操作删除或添加数据来平衡数据分布;算法级改进不会改变数据分布,主要通过修改或创建算法来加强对少数类样本的关注度。二者相比,数据级方法应用受限更少,算法级改进的算法鲁棒性普遍更高。为了更全面地提供SMOTE类算法的基础研究材料,最后列出常用数据集、评价指标,给出未来可能尝试进行的研究思路,以更好地应对不平衡数据问题。 展开更多
关键词 不平衡数据 合成少数过采样技术(SMOTE) 过采样 监督学习
在线阅读 下载PDF
基于SMOTE-UVE-SVM的小麦种子纯度高光谱图像检测 被引量:4
18
作者 朱潘雨 黄敏 赵鑫 《激光技术》 CAS CSCD 北大核心 2024年第2期281-287,共7页
为了解决基于高光谱成像技术的小麦种子纯度检测过程中样本不均衡及波段信息冗余导致纯度检测模型性能下降的问题,提出了一种融合合成少数类过采样技术(SMOTE)、非信息变量剔除(UVE)和支持向量机(SVM)的种子纯度高光谱检测模型。该模型... 为了解决基于高光谱成像技术的小麦种子纯度检测过程中样本不均衡及波段信息冗余导致纯度检测模型性能下降的问题,提出了一种融合合成少数类过采样技术(SMOTE)、非信息变量剔除(UVE)和支持向量机(SVM)的种子纯度高光谱检测模型。该模型利用SMOTE算法对小麦种子少数类(杂质)样本进行扩充,改善样本的不均衡性;同时利用UVE对高维的高光谱特征进行选择,并构建SVM模型作为分类器,以进一步提高分类的性能。结果表明,5类小麦种子的平均准确率、精确率和负样本检出率分别达到95.98%、94.94%和89.32%,较传统方法分别提高了3.89%、7.18%和12.42%。所提出的方法在基于高光谱成像技术的小麦种子纯度检测中具有较好的应用前景。 展开更多
关键词 光谱学 高光谱成像技术 合成少数过采样技术 非信息变量剔除 种子纯度
在线阅读 下载PDF
面向不平衡数据集的浓香型白酒基酒等级分类研究 被引量:4
19
作者 王继华 李兆飞 +2 位作者 杨壮 赵娜 张贵宇 《中国酿造》 CAS 北大核心 2024年第1期184-189,共6页
为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类研究。该方法首先采用合成少数类过采样技术(SMOTE)对浓香型基酒样品中少... 为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类研究。该方法首先采用合成少数类过采样技术(SMOTE)对浓香型基酒样品中少数类样本进行扩充,改善样本的不均衡性;然后结合稀疏主成分分析(SPCA)对GC-MS图谱数据进行降维;最后使用深度森林(DF)分类器建立浓香型白酒基酒分类识别模型。结果表明,使用SMOTE算法对基酒数据集进行平衡之后能够有效提高模型分类准确率,所建立的浓香型基酒分类模型正确率达到96.61%,该分类模型的建立对基酒等级分类能起到一定的指导和借鉴作用。 展开更多
关键词 气相色谱-质谱联用 浓香型白酒基酒 合成少数过采样技术 稀疏主成分分析 基酒分类
在线阅读 下载PDF
基于人体三维重建的痰湿与阴虚质辨识模型研究
20
作者 王子琰 杨涛 +1 位作者 周作建 胡孔法 《南京中医药大学学报》 CSCD 北大核心 2024年第12期1340-1347,共8页
目的提出一种基于单目光学摄像头拍摄的人体全身二维图像,通过人体三维重建算法得到人体三维形态参数,并基于此对痰湿、阴虚与其他体质进行智能辨识。方法采集受试者自然状态下标准静态站姿图像,并让受试者填写体质量表或由主任中医师... 目的提出一种基于单目光学摄像头拍摄的人体全身二维图像,通过人体三维重建算法得到人体三维形态参数,并基于此对痰湿、阴虚与其他体质进行智能辨识。方法采集受试者自然状态下标准静态站姿图像,并让受试者填写体质量表或由主任中医师判断以得到其体质信息,以体质作为数据标注,利用参数化人体三维重建算法提取人体三维形态特征,并通过合成少数类过采样技术(SMOTE)改善样本的分布,利用神经网络建立人体形态与体质之间的联系。结果基于人体三维重建的痰湿、阴虚质辨识模型精度和F 1分数分别达到86.16%和79.35%。在使用SMOTE之后,精度和F 1分数进一步提升至89.91%和84.33%。这说明该辨识模型具备良好的可行性和准确性。结论基于人体三维重建提取的人体形态特征可以有效辨识痰湿、阴虚质。相较于已有方法,该方法更加便捷,能够快速发现个体存在的偏颇体质隐患。通过提前干预、纠正以达到“治未病”的目的,在门诊和健康体检等临床场景中具有一定的应用潜力和价值,为中医体质辨识的智能化、客观化提供了新思路。 展开更多
关键词 中医体质辨识 痰湿质 阴虚质 人体三维重建 合成少数过采样技术
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部