期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
合成孔径雷达图像目标识别问题研究 被引量:9
1
作者 杨文 孙洪 曹永锋 《航天返回与遥感》 2004年第1期38-44,共7页
首先对合成孔径雷达 (SAR)图像目标识别的研究背景和国内外发展现状作了简单介绍 ,然后分析了SAR图像目标识别问题的复杂性 ,讨论了SAR目标识别系统的一般方案与方法 ,提出了基于多源信息融合和人机协作的识别框架 ,进而展望了SAR图像... 首先对合成孔径雷达 (SAR)图像目标识别的研究背景和国内外发展现状作了简单介绍 ,然后分析了SAR图像目标识别问题的复杂性 ,讨论了SAR目标识别系统的一般方案与方法 ,提出了基于多源信息融合和人机协作的识别框架 ,进而展望了SAR图像目标识别技术今后的发展方向。 展开更多
关键词 合成孔径雷达 图像分析 目标识别 自动识别 信息融合
在线阅读 下载PDF
雷达自动目标识别系统中目标检测模块的DSP实现 被引量:6
2
作者 王书宏 姜卫东 +1 位作者 邱兆坤 陈曾平 《国防科技大学学报》 EI CAS CSCD 北大核心 2002年第3期60-63,共4页
研究了基于数字信号处理器 (DSP)雷达目标检测系统的硬件结构和基于该平台的雷达目标检测方法在DSP上的实现。外场实验表明 ,该系统能与多种类型雷达对接 。
关键词 自动目标识别系统 目标检测模块 DSP 雷达 数字信号处理器
在线阅读 下载PDF
日本邮船开始测试自动船舶目标识别系统
3
《中国船检》 2021年第9期96-96,共1页
2021年9月8日,日本邮船宣布在其运营的一艘船上安装由以色列公司Orca AI开发的自动船舶目标识别系统原型并开始测试。该系统可以自动识别可能会被人眼忽视的危险目标和其他船舶,特别是在夜间和拥挤的水域。日本邮船计划在其船上试验性... 2021年9月8日,日本邮船宣布在其运营的一艘船上安装由以色列公司Orca AI开发的自动船舶目标识别系统原型并开始测试。该系统可以自动识别可能会被人眼忽视的危险目标和其他船舶,特别是在夜间和拥挤的水域。日本邮船计划在其船上试验性安装这种新系统,以验证其是否可以通过自动识别危险物体来提高船舶操纵的安全性。 展开更多
关键词 自动识别 日本邮船 目标识别系统 船舶操纵 船上 AI 安全性
在线阅读 下载PDF
基于GCN和CNN联合的SAR图像自动目标识别
4
作者 秦基凯 刘峥 +1 位作者 谢荣 冉磊 《雷达科学与技术》 北大核心 2024年第6期587-595,共9页
基于卷积神经网络(Convolutional Neural Network, CNN)的合成孔径雷达(Synthetic Aperture Radar,SAR)自动目标识别(Automatic Target Recognition, ATR)技术近些年来备受关注,已成为SAR图像解译领域的研究热点。然而,这类方法主要利... 基于卷积神经网络(Convolutional Neural Network, CNN)的合成孔径雷达(Synthetic Aperture Radar,SAR)自动目标识别(Automatic Target Recognition, ATR)技术近些年来备受关注,已成为SAR图像解译领域的研究热点。然而,这类方法主要利用的是SAR图像的幅值信息,仅从局部区域中提取特征。鉴于SAR图像中的目标通常被视为散射中心的相干叠加,这些目标展现出复杂的结构和丰富的上下文信息。仅依靠CNN难以充分捕捉目标周围的全局信息,这可能会影响识别精度。因此,为了进一步提高识别性能,本研究引入图卷积网络(Graph Convolutional Network, GCN),提出一种结合GCN和CNN的SAR ATR方法。该方法首先利用传统CNN提取与SAR图像幅值相关的局部特征,接着通过构造图数据并应用GCN提取全局特征。此外,本研究还设计了多尺度GCN,通过融合不同尺度的特征来增强模型对图数据的学习能力。在模型训练阶段,采用标签平滑技术以缓解过拟合问题。通过端到端的训练策略,实现了GCN和CNN参数的联合优化,从而实现高精度的SAR图像目标识别。最终,通过在MSTAR和OpenSARship数据集上的实验表明,所提方法在识别性能上优于现有技术,并展现出卓越的泛化能力。 展开更多
关键词 合成孔径雷达 图卷积网络 卷积神经网络 自动目标识别 多尺度GCN
在线阅读 下载PDF
WGAN-GP数据增强及预训练模型的SAR目标识别方法
5
作者 周明康 张静 朱晨晨 《信息工程大学学报》 2025年第1期21-28,共8页
合成孔径雷达自动目标识别(SAR ATR)技术广泛应用于目标监测等军事领域,但标记SAR样本难以获得限制了现有识别技术的使用。提出一种基于带梯度惩罚的生成对抗网络(WGAN-GP)和预训练模型相结合的SAR目标识别方法,利用WGAN-GP对小样本训... 合成孔径雷达自动目标识别(SAR ATR)技术广泛应用于目标监测等军事领域,但标记SAR样本难以获得限制了现有识别技术的使用。提出一种基于带梯度惩罚的生成对抗网络(WGAN-GP)和预训练模型相结合的SAR目标识别方法,利用WGAN-GP对小样本训练数据集进行扩充后,输入到大规模遥感图像场景(RESISC)分类数据集预训练后的卷积神经网络(CNN)模型中进行训练,最终得到SAR目标识别结果。利用运动和静止目标获取识别(MSTAR)数据集检测算法能力,实验结果表明,所提方法所使用的WGAN-GP对比其他生成对抗网络在SAR样本增强上具备性能优势,而RESISC45数据集的选取能有效提升分类器预训练的能力。与现有研究成果相比,所提方法在提高SAR目标识别精度和CNN模型收敛速度上具备优势。 展开更多
关键词 合成孔径雷达自动目标识别 带梯度惩罚的生成对抗网络 预训练模型
在线阅读 下载PDF
卷积神经网络在雷达自动目标识别中的研究进展 被引量:48
6
作者 贺丰收 何友 +1 位作者 刘准钆 徐从安 《电子与信息学报》 EI CSCD 北大核心 2020年第1期119-131,共13页
自动目标识别(ATR)是雷达信息处理领域的重要研究方向。由于卷积神经网络(CNN)无需进行特征工程,图像分类性能优越,因此在雷达自动目标识别领域研究中受到越来越多的关注。该文综合论述了CNN在雷达图像处理中的应用进展。首先介绍了雷... 自动目标识别(ATR)是雷达信息处理领域的重要研究方向。由于卷积神经网络(CNN)无需进行特征工程,图像分类性能优越,因此在雷达自动目标识别领域研究中受到越来越多的关注。该文综合论述了CNN在雷达图像处理中的应用进展。首先介绍了雷达自动目标识别相关知识,包括雷达图像的特性,并指出了传统的雷达自动目标识别方法局限性。给出了CNN卷积神经网络原理、组成和在计算机视觉领域的发展历程。然后着重介绍了CNN在雷达自动目标识别中的研究现状,其中详细介绍了合成孔径雷达(SAR)图像目标的检测与识别方法。接下来对雷达自动目标识别面临的挑战进行了深入分析。最后对CNN新理论、新模型,以及雷达新成像技术和未来复杂环境下的应用进行了展望。 展开更多
关键词 自动目标识别 目标检测 合成孔径雷达 卷积神经网络
在线阅读 下载PDF
基于目标CSAR回波模型的SAR自动目标识别算法 被引量:6
7
作者 张锐 洪峻 明峰 《电子与信息学报》 EI CSCD 北大核心 2011年第1期27-32,共6页
基于模板的SAR目标识别需要存储海量的目标模板,给识别系统的设计和算法效率的提高都造成了严重的困难,而基于模型的方法克服了上述问题,并已成为下一代目标识别算法研究的热点。该文提出的基于圆周SAR(CSAR)回波模型的识别算法,从目标... 基于模板的SAR目标识别需要存储海量的目标模板,给识别系统的设计和算法效率的提高都造成了严重的困难,而基于模型的方法克服了上述问题,并已成为下一代目标识别算法研究的热点。该文提出的基于圆周SAR(CSAR)回波模型的识别算法,从目标的3维CAD模型出发,利用弹射线原理构建目标的CSAR回波,并通过在线实时预测目标聚束SAR图像来完成识别。同传统的基于散射中心模型的算法相比,利用CSAR回波的算法不仅预测结果准确,而且算法简单高效。仿真实验验证了算法的有效性,并比较了相关算法的优缺点。 展开更多
关键词 合成孔径雷达 自动目标识别 圆周合成孔径雷达 弹射线法 3维模型
在线阅读 下载PDF
电子自动检测识别系统
8
《创新科技》 2007年第4期61-61,共1页
该成果将图像捕获、运动目标提取、车辆牌照定位辨识、牌照字符自动分割识别、电信网无线通讯、多路控制信号协调等技术有机结合起来,实现网络与无线通信、图像处理与自动识别、网络管理与数据更新等多种技术的优化组合。
关键词 识别系统 自动检测 电子 运动目标提取 牌照定位 网络管理 图像捕获 自动分割
在线阅读 下载PDF
滑窗加权泽尼克矩特征的雷达目标识别技术 被引量:1
9
作者 崔艳鹏 胡建伟 +1 位作者 李英 艾小凡 《电波科学学报》 EI CSCD 北大核心 2012年第5期1024-1029,共6页
合成孔径雷达(SAR)图像的方位敏感性和相干噪声,影响SAR图像目标识别效果,针对此问题,提出了一种新的滑窗加权矩特征的雷达目标识别方法。利用三角剖分与生长切割算法得到将目标和阴影从相干噪声中分割出来的图像。根据泽尼克(Zernike)... 合成孔径雷达(SAR)图像的方位敏感性和相干噪声,影响SAR图像目标识别效果,针对此问题,提出了一种新的滑窗加权矩特征的雷达目标识别方法。利用三角剖分与生长切割算法得到将目标和阴影从相干噪声中分割出来的图像。根据泽尼克(Zernike)变换,计算Zernike矩,并提取滑窗加权Zernike矩作为特征不变量。最后,利用最近邻准则进行分类识别。仿真结果表明:利用滑窗加权Zernike矩作为特征向量,克服了SAR图像对方位的敏感性,有效地提高识别率,对SAR图像识别是有效的和稳健的。 展开更多
关键词 合成孔径雷达图像 图像分割 泽尼克矩 滑窗加权 自动目标识别
在线阅读 下载PDF
SAR图像自动目标识别技术分析 被引量:6
10
作者 张强 《信息技术》 2018年第12期157-160,共4页
合成孔径雷达(SAR)图像自动目标识别(ATR)是SAR图像解译的关键技术之一,其旨在获取感兴趣区域可能包含的目标类别,为战场情报分析提供有力支撑。文中在广泛阅读相关文献的基础上,从基于模板和基于模型两个方面对现有的SAR图像目标识别... 合成孔径雷达(SAR)图像自动目标识别(ATR)是SAR图像解译的关键技术之一,其旨在获取感兴趣区域可能包含的目标类别,为战场情报分析提供有力支撑。文中在广泛阅读相关文献的基础上,从基于模板和基于模型两个方面对现有的SAR图像目标识别方法进行了较为全面的综述,对该方向的主要研究结论进行了归纳总结。同时,针对SAR图像目标识别的潜在方向进行了展望。 展开更多
关键词 合成孔径雷达 自动目标识别 基于模板的方法 基于模型的方法
在线阅读 下载PDF
多模态信息融合舰船目标识别研究进展 被引量:2
11
作者 吴文静 王中训 +1 位作者 但波 邢子杰 《探测与控制学报》 CSCD 北大核心 2024年第2期1-12,共12页
舰船目标识别的信息源主要来自现代高分辨率成像雷达形成的舰船目标信息,包括高分辨距离像、船舶自动识别系统信息以及合成孔径雷达成像。在对海探测环境相对复杂的情况下,基于单模态信息对海上舰船目标识别的能力有限,而利用多模态信... 舰船目标识别的信息源主要来自现代高分辨率成像雷达形成的舰船目标信息,包括高分辨距离像、船舶自动识别系统信息以及合成孔径雷达成像。在对海探测环境相对复杂的情况下,基于单模态信息对海上舰船目标识别的能力有限,而利用多模态信息融合将更有益于实现对海上目标高效的侦察监视和识别。首先,对单模态舰船目标识别方法进行梳理和总结,分析目前不同舰船目标识别方法存在的优势和不足;然后对多模态信息融合舰船目标识别常用数据集进行介绍,并对新方法、新模型进行了深入分析;最后对舰船目标识别未来发展趋势进行展望,为后续基于多模态信息融合的舰船目标识别方法研究提供参考。 展开更多
关键词 高分辨距离像 船舶自动识别系统 合成孔径雷达 多模态信息融合 舰船目标识别
在线阅读 下载PDF
面向SAR目标识别成像参数敏感性的深度学习技术研究进展
12
作者 何奇山 赵凌君 +1 位作者 计科峰 匡纲要 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第10期3827-3848,共22页
随着人工智能技术的发展,基于深度神经网络的合成孔径雷达(SAR)目标识别得到了广泛关注。然而,SAR系统的成像机制导致了图像特性与成像参数之间的强相关性,因此深度学习框架下的目标识别算法精度极易受成像参数敏感性的干扰,这成为了制... 随着人工智能技术的发展,基于深度神经网络的合成孔径雷达(SAR)目标识别得到了广泛关注。然而,SAR系统的成像机制导致了图像特性与成像参数之间的强相关性,因此深度学习框架下的目标识别算法精度极易受成像参数敏感性的干扰,这成为了制约先进智能算法部署到实际工程中的一大障碍。该文首先回顾了SAR图像目标识别技术的发展与相关数据集,从雷达工作的成像几何、载荷参数和噪声干扰3个角度,深入分析了成像参数变化对图像特性的影响;然后,从模型、数据、特征3个维度,总结归纳了现有文献关于深度学习技术对成像参数敏感性的鲁棒性与泛化性这一问题的研究进展;接下来,汇总并分析了典型方法的实验结果;最后讨论了在未来有望突破成像参数敏感性这一问题的深度学习技术研究方向。 展开更多
关键词 合成孔径雷达 自动目标识别 深度学习 域自适应 参数敏感性
在线阅读 下载PDF
基于数值散射模拟与模型匹配的SAR自动目标识别研究 被引量:2
13
作者 周雨 王海鹏 陈思喆 《雷达学报(中英文)》 CSCD 2015年第6期666-673,共8页
该文提出并实现了一种基于模型的SAR自动目标识别算法,该算法用实验室开发的BART进行离线电磁散射计算,系统参数设置和MSTAR数据库的参数完全一致,对待测图像和电磁散射数据所成的图像分别进行特征提取,然后进行搜索匹配。该文通过MSTA... 该文提出并实现了一种基于模型的SAR自动目标识别算法,该算法用实验室开发的BART进行离线电磁散射计算,系统参数设置和MSTAR数据库的参数完全一致,对待测图像和电磁散射数据所成的图像分别进行特征提取,然后进行搜索匹配。该文通过MSTAR 3类目标3种型号的实测数据和BART仿真数据分别验证了算法的可行性和准确性。该算法简单易实现,运行时间短,目标分类识别的效果较好。 展开更多
关键词 合成孔径雷达 自动目标识别 SAR图像模拟 模型匹配
在线阅读 下载PDF
深度卷积神经网络在SAR自动目标识别领域的应用综述 被引量:17
14
作者 许强 李伟 Pierre Loumbi 《电讯技术》 北大核心 2018年第1期106-112,共7页
深度卷积神经网络(DCNN)可自动学习目标层次化特征,在合成孔径雷达(SAR)自动目标识别(SAR-ATR)领域具有广泛应用前景。首先,介绍了DCNN的基本原理以及DCNN在光学图像上的应用与发展;然后,介绍了SAR-ATR的基本概念,综述了DCNN在SAR图像... 深度卷积神经网络(DCNN)可自动学习目标层次化特征,在合成孔径雷达(SAR)自动目标识别(SAR-ATR)领域具有广泛应用前景。首先,介绍了DCNN的基本原理以及DCNN在光学图像上的应用与发展;然后,介绍了SAR-ATR的基本概念,综述了DCNN在SAR图像语义特征提取、片段级SAR图像分类、基于数据增强技术的SAR自动目标识别、异质图像变化检测等领域中的前沿应用研究及代表性网络架构;最后,总结并讨论了DCNN在SAR-ATR应用中存在的参数设置经验化、算法泛化能力较弱等不足,并对未来研究方向进行了展望。 展开更多
关键词 合成孔径雷达 自动目标识别 深度卷积神经网络 应用综述
在线阅读 下载PDF
小样本SAR目标的双重一致性因果识别方法
15
作者 王陈炜 罗思懿 +3 位作者 黄钰林 裴季方 张寅 杨建宇 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第10期3928-3935,共8页
在小样本条件下提升方法的泛化性能,是合成孔径雷达自动目标识别(SAR ATR)的重要研究方向。针对该方向中的基础理论问题,该文建立了一个SAR ATR因果模型,证明了SAR图像中背景、相干斑等干扰在充足样本条件下可以被忽略;但在小样本条件下... 在小样本条件下提升方法的泛化性能,是合成孔径雷达自动目标识别(SAR ATR)的重要研究方向。针对该方向中的基础理论问题,该文建立了一个SAR ATR因果模型,证明了SAR图像中背景、相干斑等干扰在充足样本条件下可以被忽略;但在小样本条件下,这些因素将成为识别中的混杂因子,在提取的SAR图像特征中引入虚假相关性,影响SAR ATR性能。为了甄别和消除这些特征中的虚假效应,该文提出一个基于双重一致性的小样本SAR ATR方法,其中双重一致性包括类内一致性掩码和效应一致性损失。首先,基于鉴别特征应具有类内一致和类间差异的原则,利用类内一致性掩码,捕获目标的类内一致鉴别特征,甄别出目标特征中的混淆部分,准确估计出干扰引入的虚假效应。其次,基于不变风险最小化的思想,利用效应一致性损失,将经验风险最小化数据量需求转变为对效应相似度的度量需求,降低虚假效应消除对数据量的需求,消除特征中的虚假效应。因而,所提基于双重一致性的小样本SAR ATR方法可实现特征提取中的真实因果,实现准确的识别性能。两个基准数据集上的识别实验,验证了该方法的合理性和有效性,可提升小样本条件下SAR目标识别的性能。 展开更多
关键词 合成孔径雷达 自动目标识别 小样本 因果推断
在线阅读 下载PDF
增强-检测级联SAR地面目标检测网络
16
作者 陈宝翔 行坤 《电子设计工程》 2025年第3期151-155,161,共6页
在合成孔径雷达地面目标检测任务中,传统检测方法因为在处理过程中采用固定模型假设而导致性能严重下降。卷积神经网络作为一种基于数据驱动的方法,在拥有足够的训练集时可以显著提高目标检测的准确性,但在检测陆地背景下的微小目标时... 在合成孔径雷达地面目标检测任务中,传统检测方法因为在处理过程中采用固定模型假设而导致性能严重下降。卷积神经网络作为一种基于数据驱动的方法,在拥有足够的训练集时可以显著提高目标检测的准确性,但在检测陆地背景下的微小目标时性能仍不稳定。为了应对这些挑战,提出了一种先增强后检测的地面目标检测框架。其中包括以Transformer为骨干网络的增强网络、增强目标特征区分度的跨特征空间注意力模块以及具有多尺度特征的检测网络。形成一个级联的目标检测网络架构,以实现更好的推理性能。使用MSTAR基准数据集对提出的网络进行实验,证明提出的级联网络在各项指标上超过其他现有方法,其精度最高可以达到93.6%。 展开更多
关键词 合成孔径雷达 地面目标检测 自动目标识别 Transformer网络
在线阅读 下载PDF
深度学习在SAR目标识别与地物分类中的应用 被引量:81
17
作者 徐丰 王海鹏 金亚秋 《雷达学报(中英文)》 CSCD 2017年第2期136-148,共13页
深度卷积网络等深度学习算法变革了计算机视觉领域,在多种应用上的效果都超过了以往传统图像处理算法。该文简要回顾了将深度学习应用在SAR图像目标识别与地物分类中的工作。利用深度卷积网络从SAR图像中自动学习多层的特征表征,再利用... 深度卷积网络等深度学习算法变革了计算机视觉领域,在多种应用上的效果都超过了以往传统图像处理算法。该文简要回顾了将深度学习应用在SAR图像目标识别与地物分类中的工作。利用深度卷积网络从SAR图像中自动学习多层的特征表征,再利用学习到的特征进行目标检测与目标分类。将深度卷积网络应用于SAR目标分类数据集MSTAR上,10类目标平均分类精度达到了99%。针对带相位的极化SAR图像,该文提出了复数深度卷积网络,将该算法应用于全极化SAR图像地物分类,Flevoland 15类地物平均分类精度达到了95%。 展开更多
关键词 合成孔径雷达 深度学习 自动目标识别 地物分类
在线阅读 下载PDF
基于卷积神经网络的SAR图像目标识别研究. 被引量:73
18
作者 田壮壮 占荣辉 +1 位作者 胡杰民 张军 《雷达学报(中英文)》 CSCD 2016年第3期320-325,共6页
针对合成孔径雷达(Synthetic Aperture Radar,SAR)的图像目标识别应用,该文提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的SAR图像目标识别方法。首先通过在误差代价函数中引入类别可分性度量,提高了卷积神经网络的... 针对合成孔径雷达(Synthetic Aperture Radar,SAR)的图像目标识别应用,该文提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的SAR图像目标识别方法。首先通过在误差代价函数中引入类别可分性度量,提高了卷积神经网络的类别区分能力;然后利用改进后的卷积神经网络对SAR图像进行特征提取;最后利用支持向量机(Support Vector Machine,SVM)对特征进行分类。使用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)SAR图像数据进行实验,识别结果证明了所提方法的有效性。 展开更多
关键词 合成孔径雷达 自动目标识别 卷积神经网络 支持向量机 BP算法
在线阅读 下载PDF
基于FCNN和ICAE的SAR图像目标识别方法 被引量:10
19
作者 喻玲娟 王亚东 +2 位作者 谢晓春 林赟 洪文 《雷达学报(中英文)》 CSCD 北大核心 2018年第5期622-631,共10页
近年来,基于卷积神经网络(Convolutional Neural Network, CNN)的合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标识别得到深入研究。全卷积神经网络(Fully Convolutional Neural Network, FCNN)是CNN结构上的改进,它比CNN能获得... 近年来,基于卷积神经网络(Convolutional Neural Network, CNN)的合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标识别得到深入研究。全卷积神经网络(Fully Convolutional Neural Network, FCNN)是CNN结构上的改进,它比CNN能获得更高的识别率,但在训练过程中仍需要大量的带标签训练样本。该文提出一种基于FCNN和改进的卷积自编码器(Improved Convolutional Auto-Encoder, ICAE)的SAR图像目标识别方法,即先用ICAE无监督训练方式获得的编码器网络参数初始化FCNN的部分参数,后用带标签训练样本对FCNN进行训练。基于MSTAR数据集的十类目标分类实验结果表明,在不扩充带标签训练样本的情况下,该方法不仅能获得98.14%的平均正确识别率,而且具有较强的抗噪声能力。 展开更多
关键词 合成孔径雷达 自动目标识别 全卷积神经网络 卷积自编码器 改进的卷积自编码器
在线阅读 下载PDF
基于模糊聚类视区划分的SAR目标识别方法 被引量:10
20
作者 李娜 刘方 《电子学报》 EI CAS CSCD 北大核心 2012年第2期394-399,共6页
现有基于模板匹配的SAR目标识别技术,多通过姿态遍历来构建和存储基础模板库.为降低计算消耗和存储开销,借鉴计算机视觉中视区概念,提出了一种基于非均匀视区划分的模板库精简方法.结合关键特征矢量,基于Gustafson-Kessel(GK)算法对视... 现有基于模板匹配的SAR目标识别技术,多通过姿态遍历来构建和存储基础模板库.为降低计算消耗和存储开销,借鉴计算机视觉中视区概念,提出了一种基于非均匀视区划分的模板库精简方法.结合关键特征矢量,基于Gustafson-Kessel(GK)算法对视区作模糊聚类,以识别概率最优控制视区划分策略并提炼原型模板.采用典型舰船目标的SAR仿真图像集,验证了方法在精简模板库、实现高效SAR自动目标识别方面具有可行性. 展开更多
关键词 合成孔径雷达 自动目标识别 视区 模糊聚类
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部