期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于无人机高光谱影像的水稻叶片磷素含量估算 被引量:13
1
作者 班松涛 田明璐 +2 位作者 常庆瑞 王琦 李粉玲 《农业机械学报》 EI CAS CSCD 北大核心 2021年第8期163-171,共9页
为快速获取水稻叶片磷素含量信息,采用无人机搭载高光谱成像仪获取水稻冠层高光谱影像,并采样检测叶片磷素含量(质量分数)(Leaf phosphorus content,LPC)。分析了水稻LPC在无人机高光谱影像上的光谱特征,使用连续投影算法提取对磷素敏... 为快速获取水稻叶片磷素含量信息,采用无人机搭载高光谱成像仪获取水稻冠层高光谱影像,并采样检测叶片磷素含量(质量分数)(Leaf phosphorus content,LPC)。分析了水稻LPC在无人机高光谱影像上的光谱特征,使用连续投影算法提取对磷素敏感的特征波长,通过任意波段组合构建并筛选与磷素高度相关的光谱指数,基于特征波长反射率和光谱指数建立水稻LPC的估算模型,利用最佳模型对高光谱影像进行反演填图,得到LPC空间分布信息。结果表明:全生育期内LPC与462~718 nm范围内光谱反射率显著负相关,负相关最大处相关系数达到-0.902;LPC的特征波长为670、706、722、846 nm,基于特征波长、使用偏最小二乘回归建立的LPC估算模型精度最高,验证R^(2)达到0.925,RMSE为0.027%;在任意波段组合构建的3种类型的光谱指数中,NDSI(R498,R606)、RSI(R498,R606)和DSI(R498,R586)与LPC的相关性最高,相关系数分别为0.913、0.915和0.938;基于3个光谱指数、使用神经网络构建的LPC估算模型精度较高,验证R^(2)为0.885,RMSE为0.029%;对各生育期水稻LPC空间分布的反演结果与实测数据相一致,说明利用无人机高光谱遥感可以实现田间水稻LPC的快速无损监测。 展开更多
关键词 无人机 高光谱影像 水稻 叶片磷素含量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部