期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MRE-PointNet+AE的绿萝叶片外形参数估测算法 被引量:9
1
作者 王浩云 肖海鸿 +3 位作者 马仕航 陈玲 王江波 徐焕良 《农业机械学报》 EI CAS CSCD 北大核心 2021年第1期146-153,共8页
为了准确、高效、自动获取植物叶片外形参数,提出一种基于多分辨率编码点云深度学习网络(MRE-PointNet)和自编码器模型的绿萝叶片外形参数估测算法。使用Kinect V2相机以垂直姿态获取绿萝叶片点云数据,采用直通滤波、分割、点云精简算... 为了准确、高效、自动获取植物叶片外形参数,提出一种基于多分辨率编码点云深度学习网络(MRE-PointNet)和自编码器模型的绿萝叶片外形参数估测算法。使用Kinect V2相机以垂直姿态获取绿萝叶片点云数据,采用直通滤波、分割、点云精简算法对数据进行预处理,通过测定的叶片外形参数反演绿萝叶片几何模型,并计算几何模型的叶长、叶宽、叶面积。将不同参数组合构建的几何模型离散成点云数据输入MRE-PointNet网络,得到几何模型叶片外形参数估测的预训练模型。针对拍摄过程中存在的叶片部分遮挡和噪声问题,采用自编码器网络对点云数据进行二次处理,以几何模型离散的点云数据作为输入,经过编码解码运算得到自编码器的预训练模型,提升了MRE-PointNet网络在遮挡情况下对叶片外形参数估测的鲁棒性。试验共采集300片绿萝叶片点云数据,按照2∶1比例进行划分,以其中200片点云数据作为训练集,对预训练模型MRE-PointNet做模型迁移的参数微调,以剩下的100片点云数据作为测试集,评估模型对绿萝叶片外形参数的估测能力。采用本文算法将外形参数估测值和真实值进行数学统计与线性回归分析,得出叶长、叶宽和叶面积估测的R^2和RMSE分别为0.9005和0.4170 cm、0.9131和0.3164 cm、0.9447和3.8834 cm^2。试验表明,基于MRE-PointNet和自编码器模型的绿萝叶片外形参数估测算法具有较高的精确度和实用性。 展开更多
关键词 绿萝 叶片外形参数估测 多分辨率编码 模型迁移 深度学习 自编码器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部