This paper proposes a novel reconfigurable Goldberg 6R linkage,conformed to the construction of variant serial Goldberg 6R linkage,while simultaneously satisfying the line-symmetric Bricard qualifications.The isomeric...This paper proposes a novel reconfigurable Goldberg 6R linkage,conformed to the construction of variant serial Goldberg 6R linkage,while simultaneously satisfying the line-symmetric Bricard qualifications.The isomeric mechanism of this novel reconfigurable mechanism is obtained in combination with the isomerization method.The geometrically constrained conditions result in variable motion branches of the mechanism.Based on the singular value decomposition of the Jacobian matrix,the motion branches and branch bifurcation characteristics are analyzed,and the schematics of bifurcations in joint space is derived.This novel 6R linkage features one Goldberg 6R motion branch,two line-symmetric Bricard 6R motion branches,and one Bennett motion branch.With regards to the line-symmetric Bricard 6R motion branches,a similar function for the disassembly and recombination process can be achieved by reconstructing an intermediate configuration through bifurcation.Then,the isomerized generalized variant Goldberg 6R linkage is explicated in a similar way.Acting as a bridge,reconfigurability connects two families of overconstrained mechanisms.展开更多
A novel reconfigurable tracked robot based on four-link mechanism was proposed and released for the complicated terrain environment. This robot was modularly designed and developed, which is composed of one suspension...A novel reconfigurable tracked robot based on four-link mechanism was proposed and released for the complicated terrain environment. This robot was modularly designed and developed, which is composed of one suspension and one pair of symmetrical deployed reconfigurable track modules. This robot can implement multiple locomotion configurations by changing the track configuration, and the geometric theory analysis shows that the track length keeps constant during the process of track reconfiguration. Furthermore, a parameterized geometric model of the robot was established to analyze the kinematic performance of the robot while overcoming various obstacles. To investigate the feasibility and correctness of design theory and robot scheme, an example robot was designed to climb 45° slopes and 200 mm steps, and a group of design parameters of the robot were determined. Finally, A prototype of this robot was developed, and the test results show that the robot own powerful mobility and obstacle overcoming performance, for example, running across obstacle like mantis, extending to stride over entrenchment, standing up to elevate height, and going ahead after overturn.展开更多
基金Projects(51535008,51721003)supported by the National Natural Science Foundation of ChinaProject(B16034)supported by the Program of Introducing Talents of Discipline to Universities(“111 Program”),China。
文摘This paper proposes a novel reconfigurable Goldberg 6R linkage,conformed to the construction of variant serial Goldberg 6R linkage,while simultaneously satisfying the line-symmetric Bricard qualifications.The isomeric mechanism of this novel reconfigurable mechanism is obtained in combination with the isomerization method.The geometrically constrained conditions result in variable motion branches of the mechanism.Based on the singular value decomposition of the Jacobian matrix,the motion branches and branch bifurcation characteristics are analyzed,and the schematics of bifurcations in joint space is derived.This novel 6R linkage features one Goldberg 6R motion branch,two line-symmetric Bricard 6R motion branches,and one Bennett motion branch.With regards to the line-symmetric Bricard 6R motion branches,a similar function for the disassembly and recombination process can be achieved by reconstructing an intermediate configuration through bifurcation.Then,the isomerized generalized variant Goldberg 6R linkage is explicated in a similar way.Acting as a bridge,reconfigurability connects two families of overconstrained mechanisms.
基金Project(2007AA04Z256) supported by the National High Technology Research and Development Program of China
文摘A novel reconfigurable tracked robot based on four-link mechanism was proposed and released for the complicated terrain environment. This robot was modularly designed and developed, which is composed of one suspension and one pair of symmetrical deployed reconfigurable track modules. This robot can implement multiple locomotion configurations by changing the track configuration, and the geometric theory analysis shows that the track length keeps constant during the process of track reconfiguration. Furthermore, a parameterized geometric model of the robot was established to analyze the kinematic performance of the robot while overcoming various obstacles. To investigate the feasibility and correctness of design theory and robot scheme, an example robot was designed to climb 45° slopes and 200 mm steps, and a group of design parameters of the robot were determined. Finally, A prototype of this robot was developed, and the test results show that the robot own powerful mobility and obstacle overcoming performance, for example, running across obstacle like mantis, extending to stride over entrenchment, standing up to elevate height, and going ahead after overturn.