基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)方法的α稳定分布参数估计具有良好的性能,但不合适的提议函数常导致算法不收敛或混合性能不好。针对提议函数难以选择的问题,提出了一种基于自适应Metropolis算法的非对称α稳...基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)方法的α稳定分布参数估计具有良好的性能,但不合适的提议函数常导致算法不收敛或混合性能不好。针对提议函数难以选择的问题,提出了一种基于自适应Metropolis算法的非对称α稳定分布参数估计新方法。该方法利用Markov链的历史信息自动调整提议函数的协方差矩阵,使其不断地逼近目标分布,从而获得更好的估计结果。理论分析和仿真结果表明,此方法不仅能准确地估计出α稳定分布的4个参数,而且具有良好的鲁棒性和灵活性。展开更多
针对不规则区域面积测算中定位精度和面积计算精度两方面不足,提出一种定位精度高、面积误差小的面积测算新方法。其采用一种组合定位方法精确定位,即将差分GPS测量系统(DGPS)与马尔可夫链蒙特卡罗(Markov chain Monte Carol,MCMC)粒子...针对不规则区域面积测算中定位精度和面积计算精度两方面不足,提出一种定位精度高、面积误差小的面积测算新方法。其采用一种组合定位方法精确定位,即将差分GPS测量系统(DGPS)与马尔可夫链蒙特卡罗(Markov chain Monte Carol,MCMC)粒子滤波相结合,再配合复化Newton-cotes算法,拟合边界曲线并准确求得区域面积。将MCMC粒子滤波应用于DGPS定位数据处理,其既可处理非高斯分布噪声,又解决粒子滤波(PF)的粒子退化问题,提高定位精度。将复化Newton-cotes算法应用于面积计算,其既避免高次插值的舍入误差,又将面积区间进一步细分,提高面积计算精度。实验结果表明,该新方法定位精度更高,面积误差更小。展开更多
针对传统高斯混合模型(GMM,Gaussian mixture model)难以自动获取类属数和对噪声敏感问题,提出了一种基于可变类空间约束GMM的遥感图像分割方法。首先在构建的GMM中,将像素类属性建模为马尔可夫随机场(MRF,Markov random field),并在此...针对传统高斯混合模型(GMM,Gaussian mixture model)难以自动获取类属数和对噪声敏感问题,提出了一种基于可变类空间约束GMM的遥感图像分割方法。首先在构建的GMM中,将像素类属性建模为马尔可夫随机场(MRF,Markov random field),并在此基础上定义其先验概率;结合邻域像素类属性的后验概率和先验概率,定义噪声平滑因子,以提高算法的抗噪性;在参数求解过程中,分别采用可逆跳变马尔可夫链蒙特卡罗(RJMCMC,reversible jump Markov chain Monte Carlo)方法和最大似然(ML,maximum likelihood)方法估计类属数和模型参数;最后以最小化噪声平滑因子为准则获取最终分割结果。为了验证提出的分割方法,分别对模拟图像和全色遥感图像进行了可变类分割实验。实验结果表明提出方法的可行性和有效性。展开更多
针对响应服从非正态分布和模型不确定性的稳健参数设计问题,在Polya树混合建模的框架下,构建了一种半参数分层贝叶斯响应曲面模型,并在此基础上实现了稳健参数设计。首先,建立贝叶斯半参数模型,并获得模型各参数的后验分布;其次,运用马...针对响应服从非正态分布和模型不确定性的稳健参数设计问题,在Polya树混合建模的框架下,构建了一种半参数分层贝叶斯响应曲面模型,并在此基础上实现了稳健参数设计。首先,建立贝叶斯半参数模型,并获得模型各参数的后验分布;其次,运用马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)算法获得各参数的估计值;然后,基于此构建期望质量损失函数,并利用混合遗传算法全局寻优,获得可控因子的最优设置;最后,通过数值模拟研究和实际案例验证了所提方法的有效性。所提方法能有效解决小样本数据以及模型不确定性对优化结果影响的问题,从而能够获得更稳健可靠的可控因子最优设置。展开更多
文摘基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)方法的α稳定分布参数估计具有良好的性能,但不合适的提议函数常导致算法不收敛或混合性能不好。针对提议函数难以选择的问题,提出了一种基于自适应Metropolis算法的非对称α稳定分布参数估计新方法。该方法利用Markov链的历史信息自动调整提议函数的协方差矩阵,使其不断地逼近目标分布,从而获得更好的估计结果。理论分析和仿真结果表明,此方法不仅能准确地估计出α稳定分布的4个参数,而且具有良好的鲁棒性和灵活性。
文摘针对不规则区域面积测算中定位精度和面积计算精度两方面不足,提出一种定位精度高、面积误差小的面积测算新方法。其采用一种组合定位方法精确定位,即将差分GPS测量系统(DGPS)与马尔可夫链蒙特卡罗(Markov chain Monte Carol,MCMC)粒子滤波相结合,再配合复化Newton-cotes算法,拟合边界曲线并准确求得区域面积。将MCMC粒子滤波应用于DGPS定位数据处理,其既可处理非高斯分布噪声,又解决粒子滤波(PF)的粒子退化问题,提高定位精度。将复化Newton-cotes算法应用于面积计算,其既避免高次插值的舍入误差,又将面积区间进一步细分,提高面积计算精度。实验结果表明,该新方法定位精度更高,面积误差更小。
文摘针对响应服从非正态分布和模型不确定性的稳健参数设计问题,在Polya树混合建模的框架下,构建了一种半参数分层贝叶斯响应曲面模型,并在此基础上实现了稳健参数设计。首先,建立贝叶斯半参数模型,并获得模型各参数的后验分布;其次,运用马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)算法获得各参数的估计值;然后,基于此构建期望质量损失函数,并利用混合遗传算法全局寻优,获得可控因子的最优设置;最后,通过数值模拟研究和实际案例验证了所提方法的有效性。所提方法能有效解决小样本数据以及模型不确定性对优化结果影响的问题,从而能够获得更稳健可靠的可控因子最优设置。