期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于物理可解释自编码模型的雷达目标方位稳健识别算法
1
作者 廖磊瑶 《电子学报》 EI CAS CSCD 北大核心 2024年第11期3847-3857,共11页
现有基于深度神经网络的高距离分辨(High Range Resolution,HRR)雷达目标识别方法是纯数据驱动模型,是1个飞行事故记录器结构,特征不具可解释性,在方位缺失情况下特征泛化性差,模型识别率急剧下降.对此,本文设计了一种物理可解释自编码... 现有基于深度神经网络的高距离分辨(High Range Resolution,HRR)雷达目标识别方法是纯数据驱动模型,是1个飞行事故记录器结构,特征不具可解释性,在方位缺失情况下特征泛化性差,模型识别率急剧下降.对此,本文设计了一种物理可解释自编码模型(Physical Interpretable Auto-Encoder Model,PIAEM),解码网络结合雷达目标的散射点模型,利用编码网络挖掘雷达数据具有明确物理含义的散射中心特征,从成像角度描述目标的物理结构特性,如尺寸、轮廓等,在方位缺失情况下具有稳健的物理特性.设计了基于最小重构误差的分类准则,实现雷达目标识别.基于实测高距离分辨雷达回波数据的实验结果表明,本文方法提取的特征具有明确物理含义,且在方位缺失4/5的情况下,PIAEM比现有基于传统目标识别方法的准确率提升了10.27%,验证了本文方法具有方位稳健识别性能. 展开更多
关键词 雷达目标识别 可解释网络 散射点模型 变分推断 自编码网络 最小重构误差
在线阅读 下载PDF
基于一维卷积神经网络的岩石物理相识别 被引量:7
2
作者 李盼池 李文杰 《吉林大学学报(信息科学版)》 CAS 2022年第1期51-63,共13页
为解决岩石物理相识别问题,提出了一种基于可解释一维卷积神经网络的识别方法。该方法通过引入全局平均池化层,突出了测井曲线波形的动态变化部分;并且通过分类激活映射增强了方法的可解释性;通过引入扩张卷积和批量归一化,弥补了由全... 为解决岩石物理相识别问题,提出了一种基于可解释一维卷积神经网络的识别方法。该方法通过引入全局平均池化层,突出了测井曲线波形的动态变化部分;并且通过分类激活映射增强了方法的可解释性;通过引入扩张卷积和批量归一化,弥补了由全局平均池化层引起的性能下降。实验结果表明,测试集中4种岩石物理相的平均F1分数为0.97,相比其他同类方法提升了0.15左右。研究表明,该方法可用于识别岩石物理相,并可提高分类过程中的可解释性,从而为预测优质致密砂岩储层提供了一种新的深度学习方法。 展开更多
关键词 岩石物理相 可解释一维卷积神经网络 全局平均池化层 扩张卷积 批量归一化
在线阅读 下载PDF
基于IDANN的跨工况齿轮箱故障诊断
3
作者 赵玲 邹杰 +1 位作者 秦佳继 王航 《振动与冲击》 2025年第9期282-289,共8页
迁移学习的方法在解决齿轮箱无监督故障诊断问题上取得了极大的进展。然而,由于齿轮箱数据分布差异、噪声和干扰以及模型的局限性影响,大多方法在面对复杂的齿轮箱数据集迁移效果不佳,同时对于网络输入的可解释性研究仍然很少。提出了... 迁移学习的方法在解决齿轮箱无监督故障诊断问题上取得了极大的进展。然而,由于齿轮箱数据分布差异、噪声和干扰以及模型的局限性影响,大多方法在面对复杂的齿轮箱数据集迁移效果不佳,同时对于网络输入的可解释性研究仍然很少。提出了一种改进的域对抗网络(improve domain-adversarial neural network, IDANN)。首先,使用改进的时频网络作为特征提取器,在信号输入网络的时候提供可解释性和降噪功能;然后,在域对抗网络中添加目标域的类级对齐方法,使用两个分类器来检测靠近决策边界的目标样本,以增强迁移性能。在东南大学齿轮箱和跨座式单轨齿轮箱数据集上验证了IDANN的有效性和可靠性,并在凯斯西储大学轴承数据集上测试IDANN在噪声条件下的性能,试验证明IDANN具有优秀的诊断性能和鲁棒性。 展开更多
关键词 迁移学习 可解释网络 跨工况故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部