情感可解释分析是情感分析领域中一个新颖的任务,旨在判断文本极性,同时还需模型给出判断所依据的证据。现有的情感分析方法大多是黑盒模型,其内部决策机制对用户是不透明的。近年来,尽管模型可解释性受到越来越多的关注,但由于缺少人...情感可解释分析是情感分析领域中一个新颖的任务,旨在判断文本极性,同时还需模型给出判断所依据的证据。现有的情感分析方法大多是黑盒模型,其内部决策机制对用户是不透明的。近年来,尽管模型可解释性受到越来越多的关注,但由于缺少人工标注的评测数据,可解释评估仍旧是一个亟待解决的问题。该文提出了一个基于UIE (Universal Information Extraction)的情感可解释分析方法,该方法根据情感可解释任务的特点,使用小样本学习、文本聚类等技术,提高了模型的合理性、忠诚性。实验结果表明,该方法在“2022语言与智能技术竞赛:情感可解释评测”任务上获得了第一名的成绩。展开更多
辐射源定位结果的有效性判定能够排除噪声定位结果干扰,保留真实有效的辐射源定位点,进而获取一个清晰连续的闪电成像图.基于电磁时间反转(electromagnetic time reversal,EMTR)的雷电甚高频辐射源定位方法具有较高的定位精度,但其定位...辐射源定位结果的有效性判定能够排除噪声定位结果干扰,保留真实有效的辐射源定位点,进而获取一个清晰连续的闪电成像图.基于电磁时间反转(electromagnetic time reversal,EMTR)的雷电甚高频辐射源定位方法具有较高的定位精度,但其定位结果有效性判定方法依靠主观设定的阈值,无法准确区分弱辐射源和噪声定位结果;其次,该方法定位速度较慢,时效性较差.为了改善这些问题,本文提出了一种基于神经网络辅助决策的定位方法,构建了一个双通道二维卷积神经网络分类模型.首先对滑动窗口的时域信号进行离散傅里叶变换,将其频点幅值及相位信息输入模型进行分类预测,判断其是否为辐射源;而后仅保留辐射源滑窗数据进行定位计算,减少了滑窗运算量;最后通过密度聚类算法对定位结果进行筛选并得到最终定位结果.模型在实测的人工引雷数据上的分类精度达到了99.73%.使用梯度可视化热力图对模型所学习到的特征以及分类依据进行物理涵义分析,增强了模型的可解释性以及合理性.相较于现有的EMTR方法,本文提出的方法不仅定位速度提高了21倍,同时模型具有较好的迁移泛化能力,对于未曾学习过的人工触发闪电以及自然闪电数据均具有较好的识别能力,在这些数据上的辐射源定位数量增加了55.71%,在排除噪声干扰的同时,获得了更为精细的通道结构图,并保留了更多的雷电发展分支结构.展开更多
文摘情感可解释分析是情感分析领域中一个新颖的任务,旨在判断文本极性,同时还需模型给出判断所依据的证据。现有的情感分析方法大多是黑盒模型,其内部决策机制对用户是不透明的。近年来,尽管模型可解释性受到越来越多的关注,但由于缺少人工标注的评测数据,可解释评估仍旧是一个亟待解决的问题。该文提出了一个基于UIE (Universal Information Extraction)的情感可解释分析方法,该方法根据情感可解释任务的特点,使用小样本学习、文本聚类等技术,提高了模型的合理性、忠诚性。实验结果表明,该方法在“2022语言与智能技术竞赛:情感可解释评测”任务上获得了第一名的成绩。
文摘辐射源定位结果的有效性判定能够排除噪声定位结果干扰,保留真实有效的辐射源定位点,进而获取一个清晰连续的闪电成像图.基于电磁时间反转(electromagnetic time reversal,EMTR)的雷电甚高频辐射源定位方法具有较高的定位精度,但其定位结果有效性判定方法依靠主观设定的阈值,无法准确区分弱辐射源和噪声定位结果;其次,该方法定位速度较慢,时效性较差.为了改善这些问题,本文提出了一种基于神经网络辅助决策的定位方法,构建了一个双通道二维卷积神经网络分类模型.首先对滑动窗口的时域信号进行离散傅里叶变换,将其频点幅值及相位信息输入模型进行分类预测,判断其是否为辐射源;而后仅保留辐射源滑窗数据进行定位计算,减少了滑窗运算量;最后通过密度聚类算法对定位结果进行筛选并得到最终定位结果.模型在实测的人工引雷数据上的分类精度达到了99.73%.使用梯度可视化热力图对模型所学习到的特征以及分类依据进行物理涵义分析,增强了模型的可解释性以及合理性.相较于现有的EMTR方法,本文提出的方法不仅定位速度提高了21倍,同时模型具有较好的迁移泛化能力,对于未曾学习过的人工触发闪电以及自然闪电数据均具有较好的识别能力,在这些数据上的辐射源定位数量增加了55.71%,在排除噪声干扰的同时,获得了更为精细的通道结构图,并保留了更多的雷电发展分支结构.