期刊文献+
共找到268篇文章
< 1 2 14 >
每页显示 20 50 100
基于可见-近红外光谱技术研发便携式贝贝南瓜品质无损检测仪 被引量:2
1
作者 王加龙 马坤 +3 位作者 高鹏 朱金芳 张平 黄凡 《食品科学》 北大核心 2025年第6期254-262,共9页
为实现贝贝南瓜内在品质的快速无损检测,搭建以微型光谱仪为核心部件的便携式可见-近红外光谱检测装置,使用该装置采集不同发育期和贮藏期贝贝南瓜的光谱数据,采用一阶导数、卷积平滑(Savitzky-Golay,SG)、多元散射校正(multiplicative ... 为实现贝贝南瓜内在品质的快速无损检测,搭建以微型光谱仪为核心部件的便携式可见-近红外光谱检测装置,使用该装置采集不同发育期和贮藏期贝贝南瓜的光谱数据,采用一阶导数、卷积平滑(Savitzky-Golay,SG)、多元散射校正(multiplicative scatter correction,MSC)及以上方法组合的方式进行光谱预处理,筛选最佳的光谱预处理方法。采用连续投影算法提取特征波长,分别建立贝贝南瓜可溶性固形物含量(soluble solids content,SSC)和硬度的反向传播神经网络、多元线性回归和偏最小二乘回归预测模型,然后筛选出最优的SSC和硬度预测模型并导入装置,用于贝贝南瓜SSC和硬度的快速无损检测。结果显示,贝贝南瓜SSC最佳光谱预处理方法为SG+MSC,最优预测模型为反向传播神经网络预测模型,其预测集的决定系数Rp2、预测均方根误差和残差预测偏差分别为0.895 5、0.874 4°Brix、2.809 7;贝贝南瓜硬度最佳光谱预处理方法为SG+MSC,最优预测模型为多元线性回归预测模型,其预测集的决定系数Rp2、预测均方根误差和残差预测偏差分别为0.910 7、3.029 4 kg/cm2、3.214 4。以上结果表明,该检测装置能够较好地预测贝贝南瓜的SSC和硬度,可用于贝贝南瓜SSC和硬度的快速无损检测。 展开更多
关键词 贝贝南瓜 可见-红外光 可溶性固形物含量 硬度 无损检测
在线阅读 下载PDF
基于可见-近红外光谱的多品种猕猴桃贮藏品质的多指标综合预测模型研究
2
作者 梁子兆 李欣 +2 位作者 刘朴 关文强 李明 《食品工业科技》 北大核心 2025年第13期282-291,共10页
利用可见-近红外光谱建立多品种模型以实现快速无损检测猕猴桃贮藏时的内部品质。以‘海沃德’‘金桃’和‘徐香’猕猴桃为实验对象,测定不同贮藏时间下硬度、可溶性固形物、可滴定酸和果肉颜色的变化规律,采集592~1102 nm波长范围内的... 利用可见-近红外光谱建立多品种模型以实现快速无损检测猕猴桃贮藏时的内部品质。以‘海沃德’‘金桃’和‘徐香’猕猴桃为实验对象,测定不同贮藏时间下硬度、可溶性固形物、可滴定酸和果肉颜色的变化规律,采集592~1102 nm波长范围内的光谱数据,采用一阶导数(first-order derivatives,FD)、标准正态变量变换(standard normal variate,SNV)、二阶导数、卷积平滑以及FD+SNV的预处理算法,结合竞争性自适应重加权采样法(competitive adaptive reweighted sampling,CARS)进行特征波长选择,建立基于偏最小二乘(partial least squares,PLS)和多元线性回归(multiple linear regression,MLR)的猕猴桃理化指标的品质预测模型。结果表明,FD和SNV预处理后的模型预测精度最高,单一品种模型SSC的相对预测偏差(relative prediction deviation,RPD)均高于2.3,除‘徐香’硬度RPD为1.8外,其他品种硬度RPD也高于2.3;采用CARS提取出600~700、930~990、1000~1100 nm是相关度较高的特征波段;各指标PLS模型的预测结果相对优于MLR模型;建立混合品种通用模型得到FD+SNV结合预处理后的预测性能显著提高,SSC、TA和a*模型的RPD分别为2.280、2.183和3.425,相较于单一品种的模型准确性更好。综上,利用可见-近红外光谱技术能够用于猕猴桃贮藏品质的定量检测,为猕猴桃的无损检测技术应用提供了依据和参考。 展开更多
关键词 猕猴桃 可见-红外光 贮藏品质 预测模型
在线阅读 下载PDF
可见-近红外光谱与联合优化策略的孵前种鸭蛋受精信息无损检测
3
作者 陈灼廷 王巧华 +2 位作者 王东桥 陈燕斌 李世军 《光谱学与光谱分析》 北大核心 2025年第5期1469-1475,共7页
种鸭蛋的孵化是鸭蛋和鸭肉生产的重要保障,无精蛋不能孵化出雏鸭,且在孵化箱内容易变质影响受精蛋的孵化。为了解决人工照蛋剔除无精蛋的劳动强度大、资源浪费等问题,以入孵前种鸭蛋为研究对象,提出了一种基于可见-近红外光谱与深度学... 种鸭蛋的孵化是鸭蛋和鸭肉生产的重要保障,无精蛋不能孵化出雏鸭,且在孵化箱内容易变质影响受精蛋的孵化。为了解决人工照蛋剔除无精蛋的劳动强度大、资源浪费等问题,以入孵前种鸭蛋为研究对象,提出了一种基于可见-近红外光谱与深度学习的种鸭蛋孵前受精信息无损检测方法。使用可见-近红外光纤光谱仪对321枚樱桃谷种鸭蛋(受精蛋144枚,无精蛋177枚)采集光谱数据,将光谱数据按3∶1的比例划分出训练集和测试集,采用在原光谱数据中添加噪声与随机偏移、随机选取并计算平均光谱两种方法将训练集进行扩充。设计了一个端到端深度学习模型:自动编码1维卷积神经网络CAE-1DCNN,使用卷积、池化层代替自动编码器中的全连接层,得到改进的卷积自动编码器CAE,采用联合优化策略训练CAE-1DCNN模型,使其具备自动编码器在数据的压缩-重构过程中提取有用特征的能力,并且能够有针对性地提取适用于分类任务的特征。采用了竞争性自适应重加权采样算法(CARS)、连续投影算法(SPA)、无信息变量消除算法(UVE)三种常用特征波长选取算法和K-最近邻(KNN)、朴素贝叶斯(NB)、随机森林(RF)三种机器学习分类模型进行组合,与本文提出的模型进行对比;采用t分布随机邻域嵌入算法(t-SNE)将特征提取效果进行可视化。最后采用梯度加权类激活图(Grad-CAM)将本文提出的模型对光谱数据的关注区域进行了可视化,探讨了光谱信息的生物可解释性。研究结果表明,所提出的CAE-1DCNN模型能较好地提取光谱数据中的有效信息,判别准确率为95.06%,可见-近红外光谱技术与深度学习相结合可以实现种鸭蛋孵前受精信息无损检测,使用联合优化策略训练的卷积自动编码器有较好的特征提取能力。端到端的CAE-1DCNN模型便于集成,为开发无损检测设备提供技术支持。 展开更多
关键词 入孵前种鸭蛋 受精信息 深度学习 联合优化 可见-红外光 无损检测
在线阅读 下载PDF
基于可见-近红外光谱技术的果蔬品质检测方法 被引量:3
4
作者 韩亚芬 吴尘萱 +4 位作者 吴海华 吕程序 何亚凯 杨葆华 苑严伟 《农业工程》 2024年第1期95-101,共7页
可见-近红外光谱技术利用波长在380~2 500 nm的电磁波获取果蔬中有机分子含氢基团的特征信息,根据样品对不同波长光的吸收信息,实现果蔬的外部、内部缺陷及营养成分定性、定量分析,是目前主流的果蔬内外部品质快速无损检测技术。综述了... 可见-近红外光谱技术利用波长在380~2 500 nm的电磁波获取果蔬中有机分子含氢基团的特征信息,根据样品对不同波长光的吸收信息,实现果蔬的外部、内部缺陷及营养成分定性、定量分析,是目前主流的果蔬内外部品质快速无损检测技术。综述了目前基于吸光度谱和能量谱对果蔬营养物质含量定量分析及缺陷定性分析,所使用的检测模型和变量筛选模型及其检测准确性,为相关研究人员选择高效准确的检测模型提供技术支撑。 展开更多
关键词 可见-红外光 果蔬品质检测 能量 吸光度 变量优化
在线阅读 下载PDF
硝酸酯增塑GAP黏合剂与N100固化反应动力学的近红外光谱法研究
5
作者 张玉樊 徐胜良 +1 位作者 黄志萍 聂海英 《固体火箭技术》 北大核心 2025年第1期102-107,共6页
为监测硝酸酯增塑聚叠氮缩水甘油醚(GAP)/多异氰酸酯(N100)体系的固化反应动力学过程,基于近红外光谱技术提出了推进剂固化反应监控方法。采用多元曲线分辨-交替最小二乘(MCR-ALS)法,从连续采集的固化过程近红外光谱中提取了固化组分浓... 为监测硝酸酯增塑聚叠氮缩水甘油醚(GAP)/多异氰酸酯(N100)体系的固化反应动力学过程,基于近红外光谱技术提出了推进剂固化反应监控方法。采用多元曲线分辨-交替最小二乘(MCR-ALS)法,从连续采集的固化过程近红外光谱中提取了固化组分浓度随时间的变化曲线,通过相似度评价验证了该方法的准确性,并建立了硝酸酯增塑GAP黏合剂与N100的固化反应动力学模型。结果表明,采用连续小波变换结合MCR-ALS分析固化过程近红外光谱,方法相似度大于99%,可以提取固化反应过程中的组分浓度曲线和光谱曲线,为GAP固化反应分析提供了一种快速无损的在线监测方法;GAP黏合剂/N100体系固化反应在反应前中期遵循一级动力学反应,表观活化能为84.46 kJ/mol;反应后期,机理函数变为二维扩散模型,表观活化能为66.09 kJ/mol。 展开更多
关键词 红外光 硝酸酯增塑GAP黏合剂 固化反应动力学 多元曲线分辨-交替最小二乘法
在线阅读 下载PDF
基于傅里叶变换近红外光谱量质摘酒模型的初步探索及应用研究
6
作者 廖丽 张贵宇 +4 位作者 邹永芳 朱雪梅 彭厚博 张维 李雁 《中国酿造》 北大核心 2025年第4期190-196,共7页
为建立一种快速、高效、准确的量质摘酒技术,该研究利用气相色谱-质谱联用仪(GC-MS)对不同等级原酒(酒头、中段酒、尾酒)中的挥发性风味物质进行检测,采用主成分分析(PCA)法提取主成分。通过傅里叶变换近红外光谱(FT-NIR)获取光谱,对其... 为建立一种快速、高效、准确的量质摘酒技术,该研究利用气相色谱-质谱联用仪(GC-MS)对不同等级原酒(酒头、中段酒、尾酒)中的挥发性风味物质进行检测,采用主成分分析(PCA)法提取主成分。通过傅里叶变换近红外光谱(FT-NIR)获取光谱,对其进行光谱预处理及波长筛选,结合主成分建立回归预测模型,并采用随机森林(RF)算法构建量质摘酒模型。结果表明,PCA提取出17种主成分,采用多元散射校正(MSC)、竞争性自适应重加权采样法(CARS)及支持向量回归(SVR)方法构建回归预测模型较优,其决定系数R^(2)与均方根误差(RMSE)均值分别为0.8951、0.03;结合RF构建的量质摘酒模型效果较好,其准确率、精确率、召回率分别为99.10%、99.62%、99.78%。 展开更多
关键词 傅里叶变换红外光 气相色-联用 挥发性风味物质 量质摘酒
在线阅读 下载PDF
基于可见-近红外光谱的鲜食葡萄成熟品质关键指标检测 被引量:8
7
作者 刘文政 周雪健 +4 位作者 平凤娇 苏媛 鞠延仑 房玉林 杨继红 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期372-383,共12页
酚类物质是评价葡萄成熟品质的重要指标,本文利用可见-近红外光谱技术结合化学计量学定量分析方法对葡萄皮总酚、籽总酚、皮单宁和籽单宁含量开展了无损检测研究。通过手持式可见-近红外光谱仪采集巨玫瑰葡萄波长400~1029 nm范围内的漫... 酚类物质是评价葡萄成熟品质的重要指标,本文利用可见-近红外光谱技术结合化学计量学定量分析方法对葡萄皮总酚、籽总酚、皮单宁和籽单宁含量开展了无损检测研究。通过手持式可见-近红外光谱仪采集巨玫瑰葡萄波长400~1029 nm范围内的漫反射光谱,采用SPXY算法将其划分为校正集和预测集,结合标准正态变换(Standard normal variate,SNV)、多元散射校正(Multiplicative scatter correction,MSC)、一阶导数(First derivative,1 D)、二阶导数(Second derivative,2 D)、Savitzky-Golay卷积平滑(Savitzky-Golay smoothing,SG)和Savitzky-Golay卷积平滑+一阶导数(SG+1D)6种预处理方法以及偏最小二乘回归(Partial least squares regression,PLSR)、支持向量机回归(Support vector machine regression,SVR)和卷积神经网络(Convolutional neural network,CNN)3种建模算法,分别建立了基于全波段和特征波长的葡萄皮总酚、籽总酚、皮单宁和籽单宁定量预测模型并进行综合对比分析。结果表明,对于皮总酚、籽总酚和籽单宁,经特征波长筛选后建立的模型效果优于全波段,而对于皮单宁,全波段建立的模型较特征波长效果更佳;因此,在预测皮总酚、籽总酚、皮单宁和籽单宁含量时,最优模型分别为RAW-CARS-SVR、1D-CARS-SVR、RAW-CNN和RAW-CARS-PLSR,校正集相关系数(Correlation coefficient of calibration set,Rc)分别为0.96、0.99、0.96和0.91,预测集相关系数(Correlation coefficient of prediction set,Rp)分别为0.95、0.99、0.83和0.89,剩余预测偏差(Residual predictive deviation,RPD)分别为3.56、7.30、1.92和2.25。因此,结合可见-近红外光谱和合适的回归模型,可以实现对巨玫瑰葡萄的皮-籽总酚、皮-籽单宁含量的无损检测。 展开更多
关键词 葡萄 可见-红外光 成熟度 品质检测
在线阅读 下载PDF
基于稀疏自注意力和可见-近红外光谱的土壤氮含量预测 被引量:3
8
作者 冀荣华 李常昊 +1 位作者 郑立华 宋丽芬 《农业机械学报》 EI CAS CSCD 北大核心 2024年第10期392-398,409,共8页
氮是影响作物生长的关键因素,精准获取土壤氮含量是实施各类农田水肥管理技术的基础。利用可见-近红外光谱技术可以快速检测土壤氮含量,预测模型精度和泛化能力是制约将光谱技术应用于土壤氮含量检测的瓶颈。为此,提出了一种基于稀疏自... 氮是影响作物生长的关键因素,精准获取土壤氮含量是实施各类农田水肥管理技术的基础。利用可见-近红外光谱技术可以快速检测土壤氮含量,预测模型精度和泛化能力是制约将光谱技术应用于土壤氮含量检测的瓶颈。为此,提出了一种基于稀疏自注意力和可见-近红外光谱的土壤氮含量预测模型(Visible-near-infrared reflection spectrum and sparse transformer,VNIRSformer)用于提升预测精度和泛化能力。模型由输入层、嵌入层、编码器、解码器、预测层和输出层组成。采用大型公开数据集(Land use/cover area frame statistical survey,LUCAS)训练模型以提升模型泛化能力。实验测试VNIRSformer模型在15种不同光谱波长间隔下的性能,发现:随着波长间隔增加,预测精度先升后降,模型规模不断变小。波长间隔为1 nm时模型预测精度最低,RMSE为0.47 g/kg,R^(2)为0.78。波长间隔为5 nm时模型预测精度最高,RMSE为0.35 g/kg,R^(2)为0.89。当波长间隔从0.5 nm增加至1 nm时,模型规模下降最快,下降比例约为72%。当增加至5 nm后,模型规模匀速下降,下降比例约为5%。综合考虑模型规模及性能,最佳波长间隔设为5 nm。与6种不同预测模型(2种卷积神经网络、传统自注意力模型、偏最小二乘回归、支持向量机回归和K近邻回归)进行对比实验,发现:VNIRSformer模型性能最佳,RMSE为0.35 g/kg,R^(2)为0.89,RPD为2.95。测试VNIRSformer对不同等级的土壤氮含量预测能力,发现:VNIRSformer模型能够较好预测小于5 g/kg的土壤氮含量。将VNIRSformer模型直接应用于自采数据集,发现:R^(2)下降约0.17,表明模型具有一定泛化能力。研究表明,选取波长间隔为5 nm的光谱数据作为VNIRSformer模型输入,预测性能最佳,规模适中;稀疏注意力机制有助于提升模型预测精度,降低模型训练时间;预测模型具有一定泛化能力。研究结果可为基于可见-近红外光谱的土壤氮含量预测技术田间实际应用提供理论支持。 展开更多
关键词 土壤氮含量 预测模型 稀疏自注意力机制 可见-红外光
在线阅读 下载PDF
一种融合叶绿素荧光技术与可见-近红外光谱的番茄幼苗热胁迫无损检测方法 被引量:2
9
作者 魏子朝 卢苗 +6 位作者 雷文晔 王浩宇 魏子渊 高攀 王东 陈煦 胡瑾 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1613-1619,共7页
全球气温上升导致高温天气频发,番茄作为温度敏感型植物更易发生热胁迫,最终导致产量损失。在植物热胁迫检测中,温度通常被用作标定其受胁迫程度的依据,但由于不同植株个体的耐热性和自身健康状态存在差异,同一温度下的植株可能会产生... 全球气温上升导致高温天气频发,番茄作为温度敏感型植物更易发生热胁迫,最终导致产量损失。在植物热胁迫检测中,温度通常被用作标定其受胁迫程度的依据,但由于不同植株个体的耐热性和自身健康状态存在差异,同一温度下的植株可能会产生不同程度热胁迫症状,以温度来标定热胁迫状态可能会导致误判。以番茄幼苗为研究对象,提出了一种融合叶绿素荧光技术与可见-近红外光谱的番茄幼苗热迫胁程度快速分类方法,以提高对番茄热胁迫程度评估的准确性。采集了对照组植株和热胁迫植株的叶绿素荧光参数与可见-近红外光谱数据,以叶绿素荧光参数为热胁迫评价指标,结合k-means++聚类算法评估了番茄幼苗受热胁迫影响的严重程度,通过对标定后样本的叶绿素荧光参数和植物逆境胁迫相关生理量进行分析,验证了标定结果的合理性。以聚类模型输出为依据对光谱数据进行标定,采用3种预处理方法及其组合,结合3种特征波长提取算法对光谱数据进行处理,获得了6个与样本热胁迫程度相关的特征波段。最后以6个特征波段为输入,热胁迫程度为输出,基于4种机器学习算法构建分类模型,实现了对样本热胁迫程度的分类。结果表明:样本叶绿素荧光参数F_(v)/F_(m),F_(v)/F_(o),NPQ,Y(NPQ)和Y(NO)与其胁迫状态存在显著的中高度相关,依据以上参数将所有样本标记为无胁迫,轻度热胁迫和重度热胁迫三类。三类样本的叶绿素荧光参数、丙二醛(MDA)含量以及光合色素含量均表现出了组间显著差异,聚类结果合理。基于聚类结果对光谱数据进行标定,根据标定结果提取光谱特征波长,99%以上的冗余特征被消除,进一步筛选获得了6个用建立分类模型的特征波长。在建立的4个模型中,线性判别分析(LDA)模型具有最优性能,其测试集分类准确率为92.45%,F1分数为0.9291,AUC为0.9780。结果表明,采用叶绿素荧光技术结合可见-近红外光谱技术检测热胁迫是可行的,该研究为热胁迫的快速检测、耐热性快速筛选以及高温灾害预警提供了一种有效方法。 展开更多
关键词 热胁迫 叶绿素荧光 k-means++算法 可见-红外光 分类模型
在线阅读 下载PDF
基于可见-近红外光谱技术的广东典型地区耕地土壤养分含量预测模型评估 被引量:3
10
作者 钟鹤森 李玮 +6 位作者 张泽宇 吴玲 鄂东梅 张孟豪 许腾伟 戴军 张池 《华南农业大学学报》 CSCD 北大核心 2024年第2期218-226,共9页
【目的】可见-近红外光谱(Visible-near infrared spectroscopy,VNIRS)可以利用少量土壤样品建立预测模型,从而无损快速地预测土壤养分含量。然而,至今鲜见广东省土壤养分的VNIRS预测模型的报道。本研究旨在通过传统化学分析方法和VNIR... 【目的】可见-近红外光谱(Visible-near infrared spectroscopy,VNIRS)可以利用少量土壤样品建立预测模型,从而无损快速地预测土壤养分含量。然而,至今鲜见广东省土壤养分的VNIRS预测模型的报道。本研究旨在通过传统化学分析方法和VNIRS技术对广东典型地区的耕地土壤进行分析,构建土壤全量及速效养分含量的VNIRS预测模型,并评估利用光谱分析土壤全量和速效养分含量的可行性,为广东省土壤养分的快速检测及质量评估提供科学参考。【方法】本研究采集了粤东(梅州)、粤西(湛江)、粤北(韶关)、粤西北(肇庆)和珠三角(惠州和珠海) 5个地区共514份耕地土壤样品,测量样品有机质、全氮、可溶性有机碳、碱解氮和速效磷含量,同时利用VNIRS在400~2 490 nm波长范围内探明其全光谱特征,筛选定标样品,结合偏最小二乘法和主成分分析,建立预测模型,并在此基础上进行反向验证,评估模型的可行性。【结果】各地区土壤有机质、全氮、可溶性有机碳、碱解氮和速效磷含量及光谱特征均存在显著差异。有机质和全氮的定标预测模型效果较好,其中,粤西北地区的有机质定标相关系数达到0.831 1,珠三角地区的全氮定标相关系数达到0.789 8;可溶性有机碳、碱解氮和速效磷的预测模型效果在地区间差异较大,粤西北和珠三角地区碱解氮和速效磷的定标效果远优于其他地区。反向验证结果表明,有机质和全氮的预测值与实测值具有较好的相关性,决定系数(R2)最高分别达到0.69和0.65;粤西北和珠三角地区碱解氮的反向验证结果也较好,R2达到0.63和0.62;而可溶性有机碳和速效磷的反向验证结果总体较差。【结论】VNIRS技术能够区分省域内不同地区的土壤来源,可以作为未来土壤分类和土壤质量调查的重要评价指标。VNIRS技术能够较好地直接预测耕地土壤有机质和全氮含量,对可溶性有机碳、碱解氮、速效磷含量的预测存在明显元素差别和地区差异,今后需进一步筛选光谱范围或采用更优方式构建模型。 展开更多
关键词 可见-红外光 广东 耕地土壤 土壤养分 偏最小二乘法
在线阅读 下载PDF
可见-近红外与中红外光谱预测土壤养分的比较研究 被引量:2
11
作者 李学兰 李德成 +6 位作者 郑光辉 曾荣 蔡凯 高维常 潘文杰 姜超英 曾陨涛 《土壤学报》 CAS CSCD 北大核心 2024年第3期687-698,共12页
对土壤养分的快速和准确测定有助于适时指导施肥。为进一步研究可见-近红外(350~2500 nm)与中红外光谱(4000~650 cm^(–1))对土壤养分的预测能力,以贵州省500个土样为例,对光谱进行Savitzky-Golay(SG)平滑去噪处理,再用标准正态化(SNV)... 对土壤养分的快速和准确测定有助于适时指导施肥。为进一步研究可见-近红外(350~2500 nm)与中红外光谱(4000~650 cm^(–1))对土壤养分的预测能力,以贵州省500个土样为例,对光谱进行Savitzky-Golay(SG)平滑去噪处理,再用标准正态化(SNV)方法进行基线校正,然后分别应用偏最小二乘回归(PLSR)和支持向量机(SVM)两种方法进行建模,探讨了可见-近红外和中红外光谱对土壤全氮(TN)、全磷(TP)、全钾(TK)和碱解氮(AN)、有效磷(AP)、速效钾(AK)共六种土壤养分的预测效果。结果表明:(1)无论基于可见-近红外光谱还是中红外光谱,PLSR模型的预测精度整体均优于SVM模型。(2)中红外光谱对TN、TK和AN的预测精度均显著高于可见-近红外光谱,可见-近红外和中红外光谱均可以可靠地预测TN和TK(性能与四分位间隔距离的比率(RPIQ)大于2.10),中红外光谱可相对较可靠地预测AN(RPIQ=1.87);但两类光谱对TP、AP和AK的预测效果均较差(RPIQ<1.34)。(3)当变量投影重要性得分(VIP)大于1.5时,PLSR模型在中红外光谱区域预测TN和TK的重要波段多于可见-近红外光谱区域,TN的重要波段主要集中于可见-近红外光谱区域的1910和2207 nm附近,中红外光谱区域的1120、1000、960、910、770和668 cm^(–1)附近;TK的重要波段主要集中于可见-近红外光谱区域的540、2176、2225和2268 nm附近,中红外光谱区域的1040、960、910、776、720和668 cm^(–1)附近。因此,中红外光谱技术结合PLSR模型对土壤养分预测效果较好,可快速准确预测土壤TN和TK,可为指导适时施肥提供技术支撑。 展开更多
关键词 可见-红外光 红外光 土壤养分 偏最小二乘回归 支持向量机
在线阅读 下载PDF
利用便捷式可见-近红外光谱仪和机器学习分辨霉变小麦及霉变程度 被引量:5
12
作者 贾文珅 吕浩林 +2 位作者 张上 秦英栋 周巍 《智慧农业(中英文)》 CSCD 2024年第1期89-100,共12页
[目的/意义]可见-近红外光谱可对小麦霉变情况快速无损检测,但是高分辨率光谱仪价格高、体积大,不利于在农业环境中推广,因此通过对低分辨率光谱数据进行优化处理,以期接近高分辨率光谱仪分辨霉变小麦的效果。[方法]使用可见-近红外农... [目的/意义]可见-近红外光谱可对小麦霉变情况快速无损检测,但是高分辨率光谱仪价格高、体积大,不利于在农业环境中推广,因此通过对低分辨率光谱数据进行优化处理,以期接近高分辨率光谱仪分辨霉变小麦的效果。[方法]使用可见-近红外农产品检测仪(型号VNIAPD,分辨率1.6 nm)和复享光纤光谱仪(型号SIN02040,分辨率0.19 nm)采集100份小麦样本的新鲜状态以及不同霉变状态的光谱数据。首先对SINO2040光谱进行裁剪,让其和VNIAPD波长保持一致,均为640~1 050 nm;然后对其使用标准差标准化(Standard Deviation Normalization,SDN)、标准正态变换(Standard Normal Variation,SNV)、均值中心化(Mean Centrality,MC)、一阶导数(First-order Derivatives,1ST)、Savitzky-Golay平滑(Savitzky-Golay Smoothing,SG)、多元散射校正(Multiple Scattering Correction,MSC)等多种预处理方法处理并使用离群点检测算法(Local Outlier Factor,LOF)筛选出离群点并剔除;其次使用连续投影算法(Sequential Projection Algorithm,SPA)和最小绝对收缩和选择算法(Least Absolute Shrinkage and Selection Operator,LASSO)对预处理后的光谱进行特征波长提取;最后分别采用K近邻算法(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)、随机森林(Random Forests,RF)和朴素贝叶斯(Na?ve-Bayes)、后向传播神经网络(Back Propagation Neural Network,BPNN)、深度神经网络(Deep Neural Networks,DNN)6种算法对特征波长光谱进行建模分析,从而分辨霉变小麦以及区分霉变程度。[结果和讨论]BPNN、DNN两种神经网络模型的测试集准确率均可达到100%,但是建模时间长,模型内存大;而KNN、SVM、RF和Na?ve-Bayes浅层模型的测试集准确率为93.18%~100%,建模速度快、模型内存小。本研究光谱仪VNIAPD在光学参数(光学分辨率1.6 nm)低于SINO2040的光学参数(光学分辨率0.19 nm)且成本更低的情况下,检测准确率到达同一水平。[结论]本研究通过对比光谱数据的不同预处理方法从而找出了对应算法的最佳数据优化选择,使低分辨率光谱仪VNIAPD检测霉变小麦性能可以追平高分辨率光谱仪SINO2040,为基于可见-近红外光谱的小麦霉变低成本无损检测提供了新选择。 展开更多
关键词 可见-红外光 小麦霉变 机器学习 无损检测 食品安全 神经网络
在线阅读 下载PDF
基于沙柳冠层可见-近红外光谱的热值预测
13
作者 李颖 王继璇 +3 位作者 兰小桢 马艺诚 韩兆敏 裴志永 《林业工程学报》 CSCD 北大核心 2024年第2期70-76,共7页
热值是灌木生物质能源利用的重要燃烧性能参数之一。针对传统实验室检测方法破坏性大、费时费力、无法实现大量样本的快速检测问题,探讨了沙柳冠层可见-近红外光谱(Vis-NIR)结合不同化学计量学方法预测沙柳热值的精度差异。采用标准正... 热值是灌木生物质能源利用的重要燃烧性能参数之一。针对传统实验室检测方法破坏性大、费时费力、无法实现大量样本的快速检测问题,探讨了沙柳冠层可见-近红外光谱(Vis-NIR)结合不同化学计量学方法预测沙柳热值的精度差异。采用标准正态变量变换(SNV)、归一化数据(normalize)、标准正态变量变换+归一化数据和第二代小波变换即提升小波变换(LWT)对冠层光谱进行预处理,采用偏最小二乘法(PLS)和卷积神经网络(CNN)构建了沙柳热值可见-近红外模型。同时,对比分析了鲸鱼优化算法(WOA)、麻雀搜索算法(SSA)和灰狼优化算法(GWO)对CNN模型参数的优化效果。结果表明:当采用db4小波进行5层分解后,其对沙柳冠层可见-近红外光谱的去躁效果最好,基于LWT-WOA-CNN法构建的沙柳热值可见-近红外模型的预测精度最优,校正模型的决定系数(R2)、均方根误差(RMSE)和相对分析误差(RPD)分别为0.852,0.103和2.599,RPD值较原始的PLS和CNN模型分别提高19.11%和76.80%。该研究可为沙柳生物质能源的高效、精细化利用提供技术支撑。 展开更多
关键词 沙柳 冠层光 可见-红外光 热值 化学计量学
在线阅读 下载PDF
不同工况下可见-近红外光谱的煤矸识别研究 被引量:3
14
作者 刘涛 李博 +2 位作者 夏蕊 李瑞 王学文 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期821-828,共8页
在实现煤炭高效利用过程中,煤矸分选是一个非常重要的步骤,但现有的煤矸分选技术存在资源浪费,效率较低等问题。可见-近红外光谱识别技术具有快速可靠的优点,在煤矸识别领域已有一定的研究基础,但大多数研究并未结合实际工况进行有效分... 在实现煤炭高效利用过程中,煤矸分选是一个非常重要的步骤,但现有的煤矸分选技术存在资源浪费,效率较低等问题。可见-近红外光谱识别技术具有快速可靠的优点,在煤矸识别领域已有一定的研究基础,但大多数研究并未结合实际工况进行有效分析。首先,在实验室中搭建可见-近红外光谱采集装置,模拟实际环境下不同探测角度(0°、10°、20°、30°)、探测距离(10、15、20、25 cm)、光照角度(15°、25°、35°、45°)三种工况,并分别在单因素条件以及正交试验设计的多因素条件下,采集山西西铭煤矿的煤和矸石样本在可见-近红外波段的光谱数据。其次,对采集的光谱数据进行分析,并先后经过标准正态变量变换和Savitzky-Golay卷积平滑,以减少噪音和误差对数据的影响。最后,在单因素试验中,结合预处理算法并基于决策树(DT)、K近邻(KNN)、偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)、AdaBoost五种机器学习模型对光谱数据进行训练。单因素试验结果表明,AdaBoost算法具有较强的学习能力,在不同工况下对煤和矸石的识别准确率均为100%,优于其他识别模型。在正交试验中,支持向量机(SVM)作为识别模型进行训练,结果表明,在原始数据和预处理后的数据中,三种工况对煤矸识别准确率的影响程度不同,影响次序从大到小为不同光照角度、探测距离、探测角度。同时,对比实验结果可以得出,选用合适的预处理和建模方法可以降低不同工况对识别准确率的影响。预处理后的数据中,最优的工况组合为探测角度0°、探测距离20、光照角度35°。随机选取一组条件与最优组进行三次重复对照试验,结果表明最优组的识别表现优于随机对照组。研究结果对煤矸识别最优工况条件的寻找具有借鉴意义,并为可见-近红外光谱技术在煤矸识别领域的实际应用提供了理论基础。 展开更多
关键词 可见-红外光 不同工况 煤矸识别 ADABOOST 正交试验
在线阅读 下载PDF
基于线性判别分析和机器学习的可见-近红外光谱苹果损伤分级 被引量:2
15
作者 张宇 张重阳 +3 位作者 段鑫鑫 马少格 赵甫 王菊霞 《食品科学》 EI CAS CSCD 北大核心 2024年第22期255-261,共7页
基于线性判别分析与机器学习相结合的方法,采集不同损伤级别苹果的可见-近红外光谱数据,分析不同预处理方法对支持向量机分类模型的影响;通过线性判别分析对预处理后的光谱数据实施降维,构建支持向量机、随机森林、K近邻、决策树和极端... 基于线性判别分析与机器学习相结合的方法,采集不同损伤级别苹果的可见-近红外光谱数据,分析不同预处理方法对支持向量机分类模型的影响;通过线性判别分析对预处理后的光谱数据实施降维,构建支持向量机、随机森林、K近邻、决策树和极端梯度提升5种机器学习模型进行苹果损伤分级对比。研究结果表明,卷积平滑法预处理后模型的分级效果最佳,准确率达到87.3%;使用线性判别分析降维技术后,各模型的分级准确率显著提升,决策树模型准确率提高了16%,提升效果最佳,K近邻模型表现出了最佳的分级性能,准确率和精确率达到了96.0%和96.4%,本研究可为高效和精确评估苹果的机械损伤程度提供依据。 展开更多
关键词 苹果 可见-红外光 机器学习 线性判别分析 损伤分级
在线阅读 下载PDF
基于可见-近红外光谱和深度森林的蓝莓成熟度判别 被引量:1
16
作者 王宏恩 冯国红 +1 位作者 徐华东 张润泽 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第11期3280-3286,共7页
为快速准确对蓝莓果实成熟程度进行分类,采用近红外光谱检测技术和深度森林算法,建立了蓝莓成熟度的判别模型。采用LabSpec 5000光谱仪采集了三种不同成熟程度的蓝莓标准样品,共获取了150组光谱样本。为确定最佳输入模型特征数目,对原... 为快速准确对蓝莓果实成熟程度进行分类,采用近红外光谱检测技术和深度森林算法,建立了蓝莓成熟度的判别模型。采用LabSpec 5000光谱仪采集了三种不同成熟程度的蓝莓标准样品,共获取了150组光谱样本。为确定最佳输入模型特征数目,对原始光谱数据进行SavitzkyGolay卷积平滑处理,采用主成分分析将平滑处理后的数据降至4个主成分,并采用多项式特征衍生方法对每个主成分进行2、3、4、5阶的特征衍生,最终在深度森林中确定最佳的特征衍生阶数为4。为检验深度森林的成熟度判别效果,将其与随机森林、极端梯度提升树算法(xgboost)及stacking融合模型进行了对比,对各模型确定了最佳超参数组合,深度森林和stacking融合模型采用了手动调参,随机森林和xgboost采用了贝叶斯优化算法进行了超参数寻优。模型评估指标采用准确率、混淆矩阵、受试者工作特征曲线(ROC)、AUC度量及抗噪能力。研究结果表明,在测试集上,深度森林和stacking融合模型的准确率均为95.56%,随机森林和xgboost的准确率为93.33%;深度森林的AUC值为1,随机森林、stacking融合模型、xgboost的AUC值分别为0.99、0.98、0.96,深度森林和stacking融合模型的抗噪能力优于随机森林和xgboost。该研究的深度森林模型整体上判别效果优于其他三种模型,为蓝莓成熟程度判别提供了技术支持。 展开更多
关键词 可见-红外光 深度森林 蓝莓 成熟度 无损检测
在线阅读 下载PDF
基于可见-近红外光谱和化学计量学的带壳香榧坏籽快速识别
17
作者 翁定康 范郑欣 +2 位作者 孔令飞 孙通 喻卫武 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第9期2675-2682,共8页
带壳香榧籽在后熟处理及炒制过程中会产生无法食用的香榧坏籽,在不破坏外壳的情况下人工无法准确识别和消除,将影响香榧籽整体品质。利用两种近红外光谱仪采集带壳正常香榧籽和香榧坏籽的光谱数据,研究比较8种光谱预处理方法,采用单一... 带壳香榧籽在后熟处理及炒制过程中会产生无法食用的香榧坏籽,在不破坏外壳的情况下人工无法准确识别和消除,将影响香榧籽整体品质。利用两种近红外光谱仪采集带壳正常香榧籽和香榧坏籽的光谱数据,研究比较8种光谱预处理方法,采用单一波长选择方法(无信息变量消除算法、竞争性自适应重加权采样算法、连续投影算法和子窗口重排分析法)及联合波长选择方法对两个光谱仪的光谱数据进行特征波长筛选,应用线性判别分析(LDA)和支持向量机方法(SVM)建立香榧坏籽的识别模型并比较模型性能的优劣,以确定不同光谱仪下较优的特征波长选择方法。研究结果表明,对于光谱仪1,预处理未能有效提高模型性能,连续投影算法为最优的特征波长选择方法,所建立的LDA和SVM模型的预测集敏感性、特异性及准确率分别为97.10%、95.00%、96.00%和97.10%、97.50%、97.30%,优于全波段模型,建模波长变量数由661个缩减到9个,仅占原波长变量数的1.36%。对于光谱仪2,基线校正为最优的预处理方法,子窗口重排分析法为最优的特征波长选择方法,所建立的LDA和SVM模型的预测集敏感性、特异性及准确率分别为100.00%、92.50%、96.00%和100.00%、95.00%、97.30%,与全波段模型性能一致,建模波长变量数由155个缩减到55个,占原波长变量数的35.48%。近红外光谱技术可以较好地识别带壳香榧坏籽,合适的特征波长选择方法可以有效筛选特征波长,简化模型,并提高模型的准确率和稳定性。研究还发现1000~1300nm光谱波段与香榧籽的淀粉、脂肪和蛋白质含量有关,较适合于带壳香榧坏籽的鉴别。该研究为带壳香榧坏籽的快速无损识别提供一定参考。 展开更多
关键词 带壳香榧籽 可见-红外光 坏籽 特征波长筛选
在线阅读 下载PDF
短波近红外光谱结合ν-SVM法快速无损鉴别淀粉种类 被引量:2
18
作者 邹婷婷 窦英 +4 位作者 王莹 宋焕禄 庞小一 陶菲菲 张秋晨 《食品与发酵工业》 CAS CSCD 北大核心 2013年第3期176-178,共3页
选用不同厂家的红薯淀粉、马铃薯淀粉和玉米淀粉共112个样品,利用短波近红外光谱技术对淀粉种类进行鉴别。分别采用马氏距离判别法、C-支持向量机(C-SVM)、ν-支持向量机(ν-SVM)建立淀粉种类鉴别的短波近红外光谱模型;并对比多元散射... 选用不同厂家的红薯淀粉、马铃薯淀粉和玉米淀粉共112个样品,利用短波近红外光谱技术对淀粉种类进行鉴别。分别采用马氏距离判别法、C-支持向量机(C-SVM)、ν-支持向量机(ν-SVM)建立淀粉种类鉴别的短波近红外光谱模型;并对比多元散射矫正、平滑、一阶微分、二阶微分等多种预处理方法后的建模结果。结果表明:同时使用平滑、多元散射矫正、一阶微分3种预处理方法后,ν-SVM分类模型的效果最佳;训练集交叉验证正确率为100%,测试集正确率也达到100%。该模型快速准确无损的鉴别淀粉种类是可行的。 展开更多
关键词 短波红外光技术 淀粉 马氏距离判别 ν-支持向量机(ν-SVM) 定性分析
在线阅读 下载PDF
颗粒度对喀斯特型铝土矿可见光-近红外光谱特征的影响
19
作者 高齐云 周丽 +1 位作者 易泽邦 陈正山 《岩矿测试》 CAS CSCD 北大核心 2024年第2期234-246,共13页
岩矿反射光谱是智能矿山岩矿智能感知技术以及遥感信息识别的重要参考依据,由于地物表面粗糙度对反射光谱的影响取决于粗糙高度值与波长关系对电磁波传播的影响,因此颗粒度是影响岩石和矿物反射光谱特征的重要因素之一。喀斯特型铝土矿... 岩矿反射光谱是智能矿山岩矿智能感知技术以及遥感信息识别的重要参考依据,由于地物表面粗糙度对反射光谱的影响取决于粗糙高度值与波长关系对电磁波传播的影响,因此颗粒度是影响岩石和矿物反射光谱特征的重要因素之一。喀斯特型铝土矿在中国分布广泛,目前有关铝土矿的反射光谱基础数据还非常匮乏。为了探究颗粒度对喀斯特型铝土矿反射光谱的影响规律,本文选取贵州省修文县小山坝喀斯特型铝土矿为研究对象,采用地物光谱仪测试不同颗粒度铝土矿(铝土岩)样品的可见光-近红外反射光谱,并结合铝土矿(铝土岩)主量元素和矿物组成分析讨论铝土矿与铝土岩的光谱差异。结果表明:小山坝铝土矿(铝土岩)由于矿物组成的不同而呈现显著不同的光谱特征,其中铝土矿的反射光谱特征主要与一水硬铝石一致,在1400nm和1800nm波长处有明显的波谷特征,由OH振动谱带所致;铝土岩的反射光谱特征主要与高岭石一致,在1400nm、1900nm、2160nm和2200nm波长处有显著的波谷特征,分别由OH倍频合频、H_(2)O的振动谱带以及Al-OH基团拉伸和弯曲振动的合频所致,且在2160~2200nm波段呈双吸收峰特征。此外,不同颗粒度铝土矿(铝土岩)的整体反射率均较高,最高超过28%,且变化趋势基本相同。随着颗粒度从<0.04mm增加到3mm,铝土矿和铝土岩的反射率均逐渐减小,且铝土矿特征波谷的整体吸收强度相对稳定,而铝土岩特征波谷的吸收强度呈逐渐增大的趋势。本文研究认为可采用小颗粒度的粉末样品在1800nm、1900nm、2160nm和2200nm波长处的特征光谱进行铝土矿和铝土岩的区分。 展开更多
关键词 铝土矿 铝土岩 颗粒度 可见光-红外光 反射光特征
在线阅读 下载PDF
基于近红外光谱-光纤液滴分析法检测蓝莓综合品质
20
作者 冯国红 周金东 +1 位作者 朱玉杰 王甜甜 《食品科学》 EI CAS CSCD 北大核心 2024年第18期216-224,共9页
基于近红外光谱融合液滴分析技术进行蓝莓的二维相关分析,以实现蓝莓综合贮藏品质的检测。本研究采集8个贮藏时间‘绿宝石’蓝莓的近红外光谱图和液滴指纹图,综合分析硬度、花青素、VC、固酸比等15个理化指标,发现各指标之间有着密切的... 基于近红外光谱融合液滴分析技术进行蓝莓的二维相关分析,以实现蓝莓综合贮藏品质的检测。本研究采集8个贮藏时间‘绿宝石’蓝莓的近红外光谱图和液滴指纹图,综合分析硬度、花青素、VC、固酸比等15个理化指标,发现各指标之间有着密切的相关性,因此对15个理化指标进行隶属函数联合主成分分析计算蓝莓的综合得分,以此划分综合贮藏品质的等级。对光谱数据进行Savitzky-Golay(SG)卷积平滑、标准正态变换、多元散射矫正和迭代自适应加权惩罚最小二乘预处理,经对比分析,SG卷积平滑预处理后所建立的模型预测精度最高,预测结果为82.67%。对液滴数据取平均进行数据降维后进行移动平均平滑、SG卷积平滑、高斯滤波和中值滤波预处理,经过对比分析,经SG卷积平滑预处理后所建立的模型预测精度最高,预测结果为86.67%。以蓝莓的综合得分作为外扰,对光谱数据和液滴数据分别进行二维相关分析,分别优选出879、1019、1220、1636 nm波长和789、1653、2386、2703 ms自相关峰所对应的位置作为特征变量,以光谱和液滴特征数据融合后作为输入建立支持向量机(support vector machine,SVM)和随机森林模型,模型预测准确率分别为100.00%和98.33%,均高于以单个特征作为输入的预测准确率,且SVM模型预测效果更优,之后用‘蓝宝石’‘莱克西’和‘蓝丰’等9个蓝莓品种进行验证,采用相同的方法进行一系列数据处理建立SVM模型,结果表明模型对于不同品种蓝莓均表现出良好的预测效果。综上,利用可见-近红外光谱融合液滴分析技术可以实现蓝莓综合贮藏品质的预测,为蓝莓的品质检测提供新的方法。 展开更多
关键词 蓝莓 可见-红外光 液滴分析 二维相关光 主成分分析
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部