The photo absorbing, photo transmitting and photoluminescence performances of WiO2 photocatalysts compounded with V2O5 or WO3 were investigated by UV-Vis spectra, transmitting spectra, and PL spectra, respectively. Th...The photo absorbing, photo transmitting and photoluminescence performances of WiO2 photocatalysts compounded with V2O5 or WO3 were investigated by UV-Vis spectra, transmitting spectra, and PL spectra, respectively. The energy band structures of TiO2 photocatalysts were analyzed. The photocatalytic activities of the TiO2 photocatalysts were investigated by splitting of water for 02 evolution. The results indicate that the band gaps of WO3 and V205 are about 2.8 and 2.14 eV, respectively, and the band gap of rutile TiO2 is about 3.08 eV. Speeds of water splitting for 2%WO3-TiO2 and 8%V2O5-TiO2 photocatalysts are 420 and 110 μmol/(L.h), respectively, under UV light irradiation. V2O5 and WO3 compounded with suitable concentration can improve the photocatalytic activity of TiO2 with Fe3+ as electron acceptor.展开更多
基金Project(11JJ5010) supported by the Natural Science Foundation of Hunan Province, ChinaProject(2011RS4069) supported by the Planned Science and Technology Program of Hunan Province, ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘The photo absorbing, photo transmitting and photoluminescence performances of WiO2 photocatalysts compounded with V2O5 or WO3 were investigated by UV-Vis spectra, transmitting spectra, and PL spectra, respectively. The energy band structures of TiO2 photocatalysts were analyzed. The photocatalytic activities of the TiO2 photocatalysts were investigated by splitting of water for 02 evolution. The results indicate that the band gaps of WO3 and V205 are about 2.8 and 2.14 eV, respectively, and the band gap of rutile TiO2 is about 3.08 eV. Speeds of water splitting for 2%WO3-TiO2 and 8%V2O5-TiO2 photocatalysts are 420 and 110 μmol/(L.h), respectively, under UV light irradiation. V2O5 and WO3 compounded with suitable concentration can improve the photocatalytic activity of TiO2 with Fe3+ as electron acceptor.