期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
无人机视角多源目标检测数据集UAV-RGBT及算法基准
1
作者 汪进中 戴顺 +5 位作者 张秀伟 田雪涛 邢颖慧 汪芳 尹翰林 张艳宁 《电子学报》 北大核心 2025年第3期686-704,共19页
基于无人机(Unmanned Aerial Vehicle,UAV)平台的可见光(Red Green Blue,RGB)和热红外(Thermal infrared,T)多源目标检测,可实现全天时、全天候的目标侦察,在军用和民用领域有着重要的应用价值.受限于数据拍摄获取和处理的复杂性,当前... 基于无人机(Unmanned Aerial Vehicle,UAV)平台的可见光(Red Green Blue,RGB)和热红外(Thermal infrared,T)多源目标检测,可实现全天时、全天候的目标侦察,在军用和民用领域有着重要的应用价值.受限于数据拍摄获取和处理的复杂性,当前少有公开的UAV视角RGB-T多源目标检测数据集,一定程度上限制了UAV视角RGB-T多源目标检测算法的研究和应用.与此同时,UAV应用场景复杂多变,其飞行高度、速度、焦距和背景等快速变化,所拍摄目标在图像上呈现出尺度多样、稠密/稀疏分布不均衡、类别不平衡等特点,具有一定的挑战性.此外,在诸如目标侦察、交通监控等高时效性应用场景中,算法需在保证高精度的同时实现实时目标检测,因此,算法的设计必须充分考虑精度与速度之间的平衡.针对上述问题,本文构建了一个跨季节、跨昼夜、多类别、多尺度的大规模UAV视角RGB-T多源图像数据集UAV-RGBT,包含20个类别、5117对RGB-T图像和超11万个标注,有助于推进UAV视角多源目标检测算法的研究.同时,基于YOLOv8n模型,本文提出了一种UAV视角多源目标检测(UAV-based Dualbranch Multispectral object Detection,UAV-DMDet)模型,其通过多源交叉注意力融合和多源特征分解组合方法有效促进了多源特征的深度融合,较好地实现了模型参数量、检测速度和检测精度的均衡.实验结果表明:在UAVRGBT数据集上,UAV-DMDet模型较单源YOLOv8n模型,在RGB和T模态方面,mAP@0.5分别提高了3.61%、11.03%,mAP@0.5:0.95分别提高了0.84%、6.76%;在DroneVehicle数据集上,mAP@0.5和mAP@0.5:0.95较主流算法I2MDet提高了2.66%和12.36%;在检测速度方面,以640×640分辨率图像为例,UAV-DMDet模型在单张GeForce RTX 3090显卡上FP32精度推理速度可达31帧/s,在华为昇腾710处理器上FP16精度推理速度可达58帧/s,可有效应用于UAV视角RGB-T多源实时目标检测任务. 展开更多
关键词 无人机(UAV) 可见光-红外(rgb-t)多源目标检测 数据集 多源特征融合 YOLOv8
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部