期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于优化支持向量回归算法的锂离子电池可用容量估计 被引量:7
1
作者 陈峥 陈洋 +3 位作者 申江卫 夏雪磊 沈世全 肖仁鑫 《储能科学与技术》 CAS CSCD 北大核心 2023年第10期3203-3213,共11页
为了解决当前基于数据驱动的锂离子电池可用容量估计算法存在的老化特征提取不准确、可用容量衰退趋势跟踪精度低以及模型参数寻优耗时长等问题,本工作探究了一种基于优化支持向量机回归算法,用来对锂离子电池的可用容量进行准确估算。... 为了解决当前基于数据驱动的锂离子电池可用容量估计算法存在的老化特征提取不准确、可用容量衰退趋势跟踪精度低以及模型参数寻优耗时长等问题,本工作探究了一种基于优化支持向量机回归算法,用来对锂离子电池的可用容量进行准确估算。首先,通过分析锂电池老化数据,提取了电池容量增量曲线峰值以及峰值对应电压作为表征电池老化状态的特征因子,通过皮尔逊相关系数分析了特征因子的合理性;随后,选用麻雀优化算法完成支持向量机回归算法的核函数参数寻优,并基于优化后的支持向量机回归模型实现了电池可用容量的准确估计;最后通过对比不同核参数寻优算法验证了麻雀优化算法在参数寻优方面的先进性,并通过与传统支持向量机、高斯过程回归、长短期记忆网络等算法估计可用容量对比,验证了模型的精确性。结果表明:本工作建立的优化支持向量回归模型,能够有效追踪锂离子电池的衰退轨迹,实现对电池可用容量的准确估计,并且在不同电池上取得了较好的估算结果,可用容量最大估计误差低于2%。 展开更多
关键词 锂离子电池 可用容量估计 支持向量回归 麻雀优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部