期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于DID-AugGAN的小样本缺陷图像生成与数据增强算法
1
作者
黄绿娥
邓亚峰
+1 位作者
鄢化彪
肖文祥
《数据采集与处理》
北大核心
2025年第5期1306-1321,共16页
针对小样本条件下生成对抗网络(Generative adversarial network,GAN)生成缺陷图像质量低、不真实且多样性差的问题,提出一种缺陷图像生成算法(Defect image data augmentation GAN,DID-AugGAN),旨在实现小样本缺陷图像的数据增强。为...
针对小样本条件下生成对抗网络(Generative adversarial network,GAN)生成缺陷图像质量低、不真实且多样性差的问题,提出一种缺陷图像生成算法(Defect image data augmentation GAN,DID-AugGAN),旨在实现小样本缺陷图像的数据增强。为解决传统卷积在有限数据集中难以有效学习图像中非刚性特征的问题,设计可学习偏移卷积,以提高模型对图像语义信息的学习能力;为避免关键缺陷特征丢失,提升局部特征之间的关联性,设计多尺度坐标注意力模块,重点关注缺陷位置信息;为提高网络对输入图像局部信息的判别能力,重新设计判别器网络架构,使其从传统的单一前馈网络转变为包含对称编码与解码路径的UNet-like结构;将DID-AugGAN与原算法在Rail-4c轨道扣件缺陷数据集上进行对比实验,并利用分类网络MobileNetV3进行验证。实验结果表明,改进后的方法显著提高了IS(Inception score),有效降低了FID(Fréchet inception distance)和LPIPS(Learned perceptual image patch similarity)指标,并且MobileNetV3分类准确率和F1分数也得到提高。该算法能稳定生成高质量的缺陷图像,有效扩充缺陷数据样本,满足下游任务需求。
展开更多
关键词
小样本
学习
生成对抗网络
可学习偏移卷积
多尺度坐标注意力
UNet-like
在线阅读
下载PDF
职称材料
题名
基于DID-AugGAN的小样本缺陷图像生成与数据增强算法
1
作者
黄绿娥
邓亚峰
鄢化彪
肖文祥
机构
江西理工大学电气工程与自动化学院
多维智能感知与控制江西省重点实验室
江西理工大学理学院
出处
《数据采集与处理》
北大核心
2025年第5期1306-1321,共16页
基金
国家自然科学基金(62363013)
江西省自然科学基金(20224BAB202036)
+1 种基金
江西省教育厅科学技术重点研究项目(GJJ2200805)
江西理工大学研究生创新计划资助项目(XY2023-S159)。
文摘
针对小样本条件下生成对抗网络(Generative adversarial network,GAN)生成缺陷图像质量低、不真实且多样性差的问题,提出一种缺陷图像生成算法(Defect image data augmentation GAN,DID-AugGAN),旨在实现小样本缺陷图像的数据增强。为解决传统卷积在有限数据集中难以有效学习图像中非刚性特征的问题,设计可学习偏移卷积,以提高模型对图像语义信息的学习能力;为避免关键缺陷特征丢失,提升局部特征之间的关联性,设计多尺度坐标注意力模块,重点关注缺陷位置信息;为提高网络对输入图像局部信息的判别能力,重新设计判别器网络架构,使其从传统的单一前馈网络转变为包含对称编码与解码路径的UNet-like结构;将DID-AugGAN与原算法在Rail-4c轨道扣件缺陷数据集上进行对比实验,并利用分类网络MobileNetV3进行验证。实验结果表明,改进后的方法显著提高了IS(Inception score),有效降低了FID(Fréchet inception distance)和LPIPS(Learned perceptual image patch similarity)指标,并且MobileNetV3分类准确率和F1分数也得到提高。该算法能稳定生成高质量的缺陷图像,有效扩充缺陷数据样本,满足下游任务需求。
关键词
小样本
学习
生成对抗网络
可学习偏移卷积
多尺度坐标注意力
UNet-like
Keywords
few-shot learning
generative adversarial network(GAN)
learnable offset convolution(LOConv)
multi-scale coordinate attention(MSCA)
UNet-like
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于DID-AugGAN的小样本缺陷图像生成与数据增强算法
黄绿娥
邓亚峰
鄢化彪
肖文祥
《数据采集与处理》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部