针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化...针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。展开更多
目的针对生鲜产品冷链配送环节存在的配送成本高、产品易腐坏等问题,研究考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化。方法首先考虑同时取送货的场景,以及生鲜产品在不同场景下的新鲜度衰减速度,以车辆使用成本、货损成本、时间...目的针对生鲜产品冷链配送环节存在的配送成本高、产品易腐坏等问题,研究考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化。方法首先考虑同时取送货的场景,以及生鲜产品在不同场景下的新鲜度衰减速度,以车辆使用成本、货损成本、时间惩罚成本之和最小为目标,建立考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化模型;其次,基于此模型,设计一种带大邻域搜索思想的头脑风暴算法(Brain storm optimization with large neighborhood search algorithm,BSO-LNS)进行求解;然后,通过与CPLEX求解器、遗传算法的对比分析,验证所建模型的合理性及求解算法的有效性;最后,求解实际冷链物流企业的算例,验证本文模型在实际冷链物流配送中的应用价值。结果基于不同规模的算例,与CPLEX求解器、遗传算法相比,所设计的算法的求解效果更好,同时其求解速度更快。结论所提模型、算法可有效减少生鲜产品品质损耗,同时兼顾对总成本的控制,进而为生鲜物流企业提供了方法参考和决策依据。展开更多
目的针对当前物流背景下普遍出现的送货公司外包、退换货频繁等问题,结合现有的碳排放政策,提出低碳背景下开放式同时送取货选址−路径模型(Low-Carbon Open Location-routing Problem with Simultaneous Pickup and Delivery Problem,LO...目的针对当前物流背景下普遍出现的送货公司外包、退换货频繁等问题,结合现有的碳排放政策,提出低碳背景下开放式同时送取货选址−路径模型(Low-Carbon Open Location-routing Problem with Simultaneous Pickup and Delivery Problem,LOLRPSPD),并通过改进野马算法进行求解。方法首先设计一种新的解码方式,使得原离散问题可以采用连续算法求解。之后,运用哈尔顿序列生成初始解,改进非线性进化概率因子,使用模拟二进制交叉,增加变异操作,以及精英保留、设置连续失败重新初始化等步骤,改进野马算法。最后,通过6组不同大小的算例将改进野马算法与原始野马算法、模拟退火算法、粒子群算法、遗传算法进行对比。结果针对中大型算例,改进野马算法远超原始野马算法。针对小型算例,在确保准确率的同时,改进野马算法对比各经典算法也在速度上具有优势。结论提出的LOLRPSD模型具备合理性,改进的野马算法针对选址路径问题具有较好的搜索能力。展开更多
研究了配送车辆载重量和工作时间有限,考虑货物装卸时间的多车次同时送货和取货的车辆路径问题(multi-trip vehicle routing problem with simultaneous deliveries and pickups,MTVRPSDP),建立了以配送车辆启动成本和车辆行驶成本之和...研究了配送车辆载重量和工作时间有限,考虑货物装卸时间的多车次同时送货和取货的车辆路径问题(multi-trip vehicle routing problem with simultaneous deliveries and pickups,MTVRPSDP),建立了以配送车辆启动成本和车辆行驶成本之和最小为目标的线性整数规划模型.将量子计算和基本蚁群算法相结合提出了求解MTVRPSDP的量子蚁群算法,该算法应用量子比特启发式因子改进了人工蚂蚁的转移概率,从而提高了算法的全局搜索能力和稳定性,有效改进了算法陷入局部最优的缺陷.算例分析表明:MTVRPSDP的线性整数规划模型在实际应用中是可行和有效的,而且相比于基本蚁群算法和文献中所给其他算法的计算结果,利用量子蚁群算法和MTVRPSDP的线性整数规划模型能够得到较好的满意解,安排的车辆配送路线更加经济合理.展开更多
为使同时取送货车辆路径问题(vehicle routing problem with simultaneous pickup and delivery, VRPSPD)的运输成本和各路径间最大长度差最小化,建立同时考虑车辆容量和距离约束的VRPSPD双目标模型,通过软件测试验证了模型准确性.针对...为使同时取送货车辆路径问题(vehicle routing problem with simultaneous pickup and delivery, VRPSPD)的运输成本和各路径间最大长度差最小化,建立同时考虑车辆容量和距离约束的VRPSPD双目标模型,通过软件测试验证了模型准确性.针对问题的特点构造一个嵌入禁忌表、且具有贪婪转移准则的多目标蚁群算法,对蚂蚁产生的解执行多目标迭代局部搜索程序,以在多个邻域上优化该解或产生新的Pareto解.采用响应曲面法拟合算法参数对目标值影响的数学关系,确定最优参数组合.用该算法求得文献中12组Solomon算例的Pareto解集,并以绝对偏向最小化总成本的解与文献中仅最小化总成本的几种算法的计算结果进行比较,结果表明算法可求得权衡各目标且使单一目标近似最优的Pareto解.展开更多
文摘针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。
文摘目的针对生鲜产品冷链配送环节存在的配送成本高、产品易腐坏等问题,研究考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化。方法首先考虑同时取送货的场景,以及生鲜产品在不同场景下的新鲜度衰减速度,以车辆使用成本、货损成本、时间惩罚成本之和最小为目标,建立考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化模型;其次,基于此模型,设计一种带大邻域搜索思想的头脑风暴算法(Brain storm optimization with large neighborhood search algorithm,BSO-LNS)进行求解;然后,通过与CPLEX求解器、遗传算法的对比分析,验证所建模型的合理性及求解算法的有效性;最后,求解实际冷链物流企业的算例,验证本文模型在实际冷链物流配送中的应用价值。结果基于不同规模的算例,与CPLEX求解器、遗传算法相比,所设计的算法的求解效果更好,同时其求解速度更快。结论所提模型、算法可有效减少生鲜产品品质损耗,同时兼顾对总成本的控制,进而为生鲜物流企业提供了方法参考和决策依据。
文摘目的针对当前物流背景下普遍出现的送货公司外包、退换货频繁等问题,结合现有的碳排放政策,提出低碳背景下开放式同时送取货选址−路径模型(Low-Carbon Open Location-routing Problem with Simultaneous Pickup and Delivery Problem,LOLRPSPD),并通过改进野马算法进行求解。方法首先设计一种新的解码方式,使得原离散问题可以采用连续算法求解。之后,运用哈尔顿序列生成初始解,改进非线性进化概率因子,使用模拟二进制交叉,增加变异操作,以及精英保留、设置连续失败重新初始化等步骤,改进野马算法。最后,通过6组不同大小的算例将改进野马算法与原始野马算法、模拟退火算法、粒子群算法、遗传算法进行对比。结果针对中大型算例,改进野马算法远超原始野马算法。针对小型算例,在确保准确率的同时,改进野马算法对比各经典算法也在速度上具有优势。结论提出的LOLRPSD模型具备合理性,改进的野马算法针对选址路径问题具有较好的搜索能力。
文摘研究了配送车辆载重量和工作时间有限,考虑货物装卸时间的多车次同时送货和取货的车辆路径问题(multi-trip vehicle routing problem with simultaneous deliveries and pickups,MTVRPSDP),建立了以配送车辆启动成本和车辆行驶成本之和最小为目标的线性整数规划模型.将量子计算和基本蚁群算法相结合提出了求解MTVRPSDP的量子蚁群算法,该算法应用量子比特启发式因子改进了人工蚂蚁的转移概率,从而提高了算法的全局搜索能力和稳定性,有效改进了算法陷入局部最优的缺陷.算例分析表明:MTVRPSDP的线性整数规划模型在实际应用中是可行和有效的,而且相比于基本蚁群算法和文献中所给其他算法的计算结果,利用量子蚁群算法和MTVRPSDP的线性整数规划模型能够得到较好的满意解,安排的车辆配送路线更加经济合理.
文摘为使同时取送货车辆路径问题(vehicle routing problem with simultaneous pickup and delivery, VRPSPD)的运输成本和各路径间最大长度差最小化,建立同时考虑车辆容量和距离约束的VRPSPD双目标模型,通过软件测试验证了模型准确性.针对问题的特点构造一个嵌入禁忌表、且具有贪婪转移准则的多目标蚁群算法,对蚂蚁产生的解执行多目标迭代局部搜索程序,以在多个邻域上优化该解或产生新的Pareto解.采用响应曲面法拟合算法参数对目标值影响的数学关系,确定最优参数组合.用该算法求得文献中12组Solomon算例的Pareto解集,并以绝对偏向最小化总成本的解与文献中仅最小化总成本的几种算法的计算结果进行比较,结果表明算法可求得权衡各目标且使单一目标近似最优的Pareto解.