期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于空间可变形Transformer的三维点云配准方法
被引量:
2
1
作者
谢帅康
熊风光
+3 位作者
朱新杰
宋宁栋
李文清
王廷凤
《计算机工程》
CAS
CSCD
北大核心
2024年第3期224-232,共9页
针对低重叠场景下点云配准方法鲁棒性差、配准精度低的问题,提出一种基于空间可变形Transformer(SDT)的三维点云配准方法。设计多级分辨率特征的提取与融合方法,显式计算点云的局部空间关系。利用SDT模块增强点云空间特征的表达能力,聚...
针对低重叠场景下点云配准方法鲁棒性差、配准精度低的问题,提出一种基于空间可变形Transformer(SDT)的三维点云配准方法。设计多级分辨率特征的提取与融合方法,显式计算点云的局部空间关系。利用SDT模块增强点云空间特征的表达能力,聚合局部与全局的特征得到特征矩阵。计算两个特征矩阵的相似度矩阵并额外地为其添加边缘松弛块,有效降低了不可行匹配对配准鲁棒性的影响,同时对相似度矩阵进行归一化等计算得到软对应置信度矩阵,根据预测的对应点空间特征是否一致来寻找点云在低重叠场景下更精确的对应关系,使用直接定义在对应关系上的损失来训练网络,将软对应关系转换为一对一的硬匹配关系,最终通过随机抽样一致性刚性变换求解器执行配准。实验结果表明,在重叠率低于30%的3DLoMatch场景中,该方法的特征匹配召回率和配准召回率相比于高度关注重叠区域的成对点云配准等方法至少提高了3.7和3.9个百分点,并且具有较强的鲁棒性。
展开更多
关键词
低重叠率
多特征融合
可变形自注意力
边缘松弛块
重叠对应预测
在线阅读
下载PDF
职称材料
改进YOLOv5su模型检测桃树缩叶病
被引量:
2
2
作者
姚凌云
周俊峰
李丽
《农业工程学报》
EI
CAS
CSCD
北大核心
2024年第14期109-117,共9页
为实现自然环境下桃树缩叶病的检测,该研究提出了一种基于YOLOv5su的桃树缩叶病识别改进模型DLLYOLOv5su。首先,针对桃树缩叶病目标特征变化较大的问题,在骨干网络最后一层C3模块中加入可变形自注意力模块(deformable attention,DA),使...
为实现自然环境下桃树缩叶病的检测,该研究提出了一种基于YOLOv5su的桃树缩叶病识别改进模型DLLYOLOv5su。首先,针对桃树缩叶病目标特征变化较大的问题,在骨干网络最后一层C3模块中加入可变形自注意力模块(deformable attention,DA),使模型更加关注目标区域,降低背景对模型的影响,提高模型在复杂背景下的拟合能力。其次在SPPF(fast spatial pyramid pooling)模块中引入LSKA(large separable kernel attention)结构,大核卷积增大了模型的感受野,使模型能够关注更多信息。最后,提出了LAWD(lightweight adaptive weighted downsampling)模块,使用轻量化的下采样结构替换卷积模块,减少计算开销。在桃树缩叶病数据集上进行试验,结果显示,DLL-YOLOv5su模型权重大小为17.6 MB,检测速度为83帧/s。识别准确率P、召回率R和平均精度均值mAP_(50)分别达到了80.7%、73.1%和80.4%,相较于原始YOLOv5su分别提高了4.2、2.4和4.3个百分点。与YOLOv3-tiny、Faster R-CNN、YOLOv7和YOLOv8相比mAP_(50)分别高出了28.5、11.8、2.1和4.1个百分点。改进模型识别精度高,误检、漏检率低,检测速度满足实时检测的要求,可以为桃树缩叶病的实时监测和预警提供参考。
展开更多
关键词
图像处理
病害
缩叶病
目标检测
YOLOv5su
可变形自注意力
大核卷积
轻量化
在线阅读
下载PDF
职称材料
题名
基于空间可变形Transformer的三维点云配准方法
被引量:
2
1
作者
谢帅康
熊风光
朱新杰
宋宁栋
李文清
王廷凤
机构
中北大学计算机科学与技术学院
中北大学山西省视觉信息处理及智能机器人工程研究中心
中北大学机器视觉与虚拟现实山西省重点实验室
出处
《计算机工程》
CAS
CSCD
北大核心
2024年第3期224-232,共9页
基金
国家自然科学基金(62272426)
山西省回国留学人员科研基金(2020-113)
+1 种基金
山西省科技成果转化引导专项基金(202104021301055)
山西省科技重大专项计划“揭榜挂帅”项目(202201150401021)。
文摘
针对低重叠场景下点云配准方法鲁棒性差、配准精度低的问题,提出一种基于空间可变形Transformer(SDT)的三维点云配准方法。设计多级分辨率特征的提取与融合方法,显式计算点云的局部空间关系。利用SDT模块增强点云空间特征的表达能力,聚合局部与全局的特征得到特征矩阵。计算两个特征矩阵的相似度矩阵并额外地为其添加边缘松弛块,有效降低了不可行匹配对配准鲁棒性的影响,同时对相似度矩阵进行归一化等计算得到软对应置信度矩阵,根据预测的对应点空间特征是否一致来寻找点云在低重叠场景下更精确的对应关系,使用直接定义在对应关系上的损失来训练网络,将软对应关系转换为一对一的硬匹配关系,最终通过随机抽样一致性刚性变换求解器执行配准。实验结果表明,在重叠率低于30%的3DLoMatch场景中,该方法的特征匹配召回率和配准召回率相比于高度关注重叠区域的成对点云配准等方法至少提高了3.7和3.9个百分点,并且具有较强的鲁棒性。
关键词
低重叠率
多特征融合
可变形自注意力
边缘松弛块
重叠对应预测
Keywords
low overlap rate
multi-feature fusion
deformable self-attention
edge slack block
overlap correspondence prediction
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
改进YOLOv5su模型检测桃树缩叶病
被引量:
2
2
作者
姚凌云
周俊峰
李丽
机构
西南大学工程技术学院
重庆市丘陵山区农业装备重点实验室
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2024年第14期109-117,共9页
基金
国家自然科学基金项目(No.52175121)。
文摘
为实现自然环境下桃树缩叶病的检测,该研究提出了一种基于YOLOv5su的桃树缩叶病识别改进模型DLLYOLOv5su。首先,针对桃树缩叶病目标特征变化较大的问题,在骨干网络最后一层C3模块中加入可变形自注意力模块(deformable attention,DA),使模型更加关注目标区域,降低背景对模型的影响,提高模型在复杂背景下的拟合能力。其次在SPPF(fast spatial pyramid pooling)模块中引入LSKA(large separable kernel attention)结构,大核卷积增大了模型的感受野,使模型能够关注更多信息。最后,提出了LAWD(lightweight adaptive weighted downsampling)模块,使用轻量化的下采样结构替换卷积模块,减少计算开销。在桃树缩叶病数据集上进行试验,结果显示,DLL-YOLOv5su模型权重大小为17.6 MB,检测速度为83帧/s。识别准确率P、召回率R和平均精度均值mAP_(50)分别达到了80.7%、73.1%和80.4%,相较于原始YOLOv5su分别提高了4.2、2.4和4.3个百分点。与YOLOv3-tiny、Faster R-CNN、YOLOv7和YOLOv8相比mAP_(50)分别高出了28.5、11.8、2.1和4.1个百分点。改进模型识别精度高,误检、漏检率低,检测速度满足实时检测的要求,可以为桃树缩叶病的实时监测和预警提供参考。
关键词
图像处理
病害
缩叶病
目标检测
YOLOv5su
可变形自注意力
大核卷积
轻量化
Keywords
image processing
diseases
leaf curl disease
object detection
YOLOv5su
deformable attention
large kernel convolution
light weight
分类号
S24 [农业科学—农业电气化与自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于空间可变形Transformer的三维点云配准方法
谢帅康
熊风光
朱新杰
宋宁栋
李文清
王廷凤
《计算机工程》
CAS
CSCD
北大核心
2024
2
在线阅读
下载PDF
职称材料
2
改进YOLOv5su模型检测桃树缩叶病
姚凌云
周俊峰
李丽
《农业工程学报》
EI
CAS
CSCD
北大核心
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部