期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv10n网络模型的芯片封装基板外观缺陷检测
1
作者 马一凡 朱晓春 +3 位作者 王鸣昕 胡彬 彭国峰 朱昌飞 《半导体技术》 北大核心 2025年第8期833-842,859,共11页
为提高芯片封装基板外观缺陷检测的精度并减小其计算量,提出一种基于改进YOLOv10n网络模型的芯片封装基板外观缺陷检测方法。该方法利用星形块(Star_Block)与上下文锚点注意力(CAA)机制将C2f模块重构为C2f_Star_CAA模块,通过增加输入映... 为提高芯片封装基板外观缺陷检测的精度并减小其计算量,提出一种基于改进YOLOv10n网络模型的芯片封装基板外观缺陷检测方法。该方法利用星形块(Star_Block)与上下文锚点注意力(CAA)机制将C2f模块重构为C2f_Star_CAA模块,通过增加输入映射的特征维度并整合远距离上下文信息,有效提升了模型的特征提取能力;引入可变形卷积网络(DCNv3),针对不同尺度缺陷自适应调整卷积核大小,显著增强了模型的多尺度缺陷检测能力;用动态检测头(Dyhead)取代普通检测头,通过动态选择不同作用的注意力机制,强化了对缺陷的位置、尺度及类别的感知,提升了模型的泛化能力。基于自定义构建的芯片封装基板数据集进行实验,结果表明,改进模型的计算量较原始模型减小了7.14%,其精确率(P)、召回率(R)、平均精度均值(mAP@0.5)分别达到了84.9%、86.3%、90.4%,较原始模型分别提高了3.4%、4.9%和3.3%,该方法在减小模型计算量的同时提高了检测精度,验证了其在实时监测场景中的可行性。 展开更多
关键词 封装基板 缺陷检测 YOLOv10n C2f_Star_CAA 可变形卷积网络(dcnv3) 动态检测头(Dyhead)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部