期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于EE-YOLOv8s的多场景火灾迹象检测算法 被引量:2
1
作者 崔克彬 耿佳昌 《图学学报》 北大核心 2025年第1期13-27,共15页
针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征... 针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征提取网络,保证模型轻量化的同时,优化图像特征提取;引入大型可分离核注意力机制LSKA改进SPPELAN模块,将空间金字塔部分改进为SPP_LSKA_ELAN,充分捕获大范围内的空间细节信息,在复杂多变的火灾场景中提取更全面的特征,从而区分目标与相似物体的差异;Neck部分引入可变形卷积DCN和跨空间高效多尺度注意力EMA,实现C2f_DCN_EMA可变形卷积校准模块,增强对烟火目标边缘轮廓变化的适应能力,促进特征的融合与校准,突出目标特征;在Head部分增设携带有轻量级、无参注意力机制SimAM的小目标检测头,并重新规划检测头通道数,加强多尺寸目标表征能力的同时,降低冗余以提高参数有效利用率。实验结果表明,改进后的EE-YOLOv8s网络模型相较于原模型,其参数量减少了13.6%,准确率提升了6.8%,召回率提升了7.3%,mAP提升了5.4%,保证检测速度的同时,提升了火灾迹象目标的检测性能。 展开更多
关键词 烟火目标检测 EfficientNetEasy主干网络 大型可分离核注意力机制 可变形卷积校准模块 小目标检测
在线阅读 下载PDF
基于改进YOLOv5香菇成熟度检测模型
2
作者 李俊成 徐增丙 孙茂基 《农业装备与车辆工程》 2024年第6期18-22,共5页
准确检测成熟度对香菇智能化采摘具有重要意义,因此提出一种基于改进YOLOv5实例分割香菇的成熟度检测方法。该方法在骨干网络的C3模块中添加挤压和激发模块(SENet),增强了对香菇具体特征的学习能力,同时将颈部网络中的2个卷积模块替换... 准确检测成熟度对香菇智能化采摘具有重要意义,因此提出一种基于改进YOLOv5实例分割香菇的成熟度检测方法。该方法在骨干网络的C3模块中添加挤压和激发模块(SENet),增强了对香菇具体特征的学习能力,同时将颈部网络中的2个卷积模块替换为可变形卷积模块(Deformable Convnets v2, DCN v2),使网络更好地适应目标香菇的形状和位置变化,提高成熟度检测的准确率和鲁棒性。实验表明,改进后的模型识别香菇成熟度的检测精度达到91.7%,较原模型提高了6.1%,检测的准确性与可靠性均优于原模型,为香菇智能化种植推广提供了技术支撑。 展开更多
关键词 YOLOv5 注意力机制 可变形卷积模块 香菇成熟度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部