期刊文献+
共找到253篇文章
< 1 2 13 >
每页显示 20 50 100
一种3D可变形卷积结合Transformer的视频压缩感知方法
1
作者 杜秀丽 朱金耀 +2 位作者 高星 吕亚娜 邱少明 《计算机科学》 北大核心 2025年第11期150-156,共7页
面对视频的分辨率越来越高导致数据量越来越大的挑战,以更低的采样率实现视频的高质量重构可降低对通信资源的占用,进而降低采样端的部署难度。然而,现有的视频压缩感知方法对视频的帧间相关性无法充分利用,低采样率下的视频重构质量有... 面对视频的分辨率越来越高导致数据量越来越大的挑战,以更低的采样率实现视频的高质量重构可降低对通信资源的占用,进而降低采样端的部署难度。然而,现有的视频压缩感知方法对视频的帧间相关性无法充分利用,低采样率下的视频重构质量有待进一步提高。随着深度学习技术的引入,基于深度学习的分布式视频压缩感知给视频压缩感知重构提供了新思路。因此,结合3D可变形卷积与Transformer构建CS3Dformer网络,利用3D可变形卷积捕获视频的局部特征和时空特征的有效性,学习视频帧间的时空特征;同时,利用Transformer捕获长距离依赖特征的优点,一定程度上弥补了卷积神经网络方法在捕获图像的非局部相似性方面的缺陷,能更好地实现对视频的建模。所提方法是一种端到端的视频压缩感知方法,在多个数据集上的实验结果验证了该方法的有效性。 展开更多
关键词 压缩感知 视频重构 可变形卷积 TRANSFORMER 卷积神经网络
在线阅读 下载PDF
可变形卷积网络的解释性研究及其在蝴蝶物种识别模型中的应用
2
作者 王璐 刘东 刘卫光 《计算机应用》 北大核心 2025年第1期261-274,共14页
近年来,可变形卷积网络(DCN)广泛运用于图像识别和分类等领域,然而对该模型的可解释性研究较为有限,它的适用性缺乏充分理论支持。针对上述问题,提出DCN的解释性研究及其在蝴蝶物种识别模型中的应用。首先,引入可变形卷积对VGG16、ResNe... 近年来,可变形卷积网络(DCN)广泛运用于图像识别和分类等领域,然而对该模型的可解释性研究较为有限,它的适用性缺乏充分理论支持。针对上述问题,提出DCN的解释性研究及其在蝴蝶物种识别模型中的应用。首先,引入可变形卷积对VGG16、ResNet50和DenseNet121(Dense Convolutional Network121)分类模型进行改进;其次,采用反卷积和类激活映射(CAM)等可视化手段来对比可变形卷积和标准卷积在特征提取能力上的差异,且通过消融实验结果表明可变形卷积在神经网络的较低层且不连续使用时效果更佳;再次,提出显著性移除(SR)并对CAM的性能和激活特征重要性进行统一评价,同时通过设置不同的移除阈值等多个角度,提高评价的客观性;最后,基于评价结果更高的FullGrad(Full Gradient-weighted)解释模型识别的判断依据。实验结果显示,在Archive_80数据集上,所提出的D_v2-DenseNet121的准确率达到97.03%,相较于DenseNet121分类模型提高了2.82个百分点。可见,可变形卷积的引入赋予了神经网络模型不变性特征提取能力,并提高了分类模型的准确率。 展开更多
关键词 可变形卷积网络 可解释性 蝴蝶物种识别 类激活映射 显著性移除
在线阅读 下载PDF
自适应可变形卷积与焦点感知的接触网异物检测
3
作者 陈永 周建宇 +1 位作者 安卓奥博 陈超亚 《铁道科学与工程学报》 北大核心 2025年第7期3314-3327,共14页
高速铁路接触网是为列车提供牵引供电的关键基础设施,若异物侵入接触网,易引发受电弓故障及电流异常,进而中断供电,严重威胁高速铁路列车的运行安全。针对现有接触网异物检测方法在异物检测时存在特征提取能力不足、易受复杂背景干扰以... 高速铁路接触网是为列车提供牵引供电的关键基础设施,若异物侵入接触网,易引发受电弓故障及电流异常,进而中断供电,严重威胁高速铁路列车的运行安全。针对现有接触网异物检测方法在异物检测时存在特征提取能力不足、易受复杂背景干扰以及检测精度不高的问题,提出一种自适应可变形卷积与焦点感知的接触网异物检测模型。首先,设计自适应稀疏可变形卷积和结构感知前馈网络构建特征提取网络,动态调整具有无界权重的卷积核来充分适应不同异物的特征,并采用双分支结构设计的结构感知前馈网络进一步增强局部特征和全局特征,提高了对接触网异物特征提取能力;然后,提出动态焦点感知位置查询Transformer解码器,根据解码器块的交叉注意力分数和对应特征位置编码来动态生成位置查询,以便提供更准确的异物位置信息和细节信息,降低了复杂背景对异物检测的影响;最后,设计边界细化网络,对Transformer解码器输出的粗分割结果进一步细化,通过迭代变形粗分割结果的轮廓,使其精准输出最终异物检测分割结果。高速铁路接触网异物检测实验表明,所提方法在主客观评价方面均优于对比方法,平均准确率AP相较于Mask R-CNN、Swin-Transformer、Mask2Former和MP-Former分别提高了8.49%、7.26%、4.19%和3.06%。研究结果表明,该方法具有更好的高速铁路接触网异物检测性能。 展开更多
关键词 高铁接触网 异物检测 自适应稀疏动态可变形卷积 焦点感知位置查询 语义分割
在线阅读 下载PDF
融合可变形卷积的轻量级路面病害检测算法 被引量:1
4
作者 孔令鑫 陈紫强 +1 位作者 晋良念 蒋艳英 《科学技术与工程》 北大核心 2025年第2期683-694,共12页
针对现有的路面病害检测算法在复杂环境下检测精度低、模型复杂度高的问题,在YOLOv5基础上,提出了一种融合可变形卷积的轻量级路面病害检测算法(lightweight deformable convolution YOLOv5,LDC-YOLOv5)。首先,针对真实路面病害复杂不... 针对现有的路面病害检测算法在复杂环境下检测精度低、模型复杂度高的问题,在YOLOv5基础上,提出了一种融合可变形卷积的轻量级路面病害检测算法(lightweight deformable convolution YOLOv5,LDC-YOLOv5)。首先,针对真实路面病害复杂不规整的特点,使用可变形卷积(Deformable Conv)和深度卷积(Depthwise Conv),设计了一种轻量级特征提取模块,代替原网络主干部分的C3模块,使卷积核聚焦在无规则裂缝病害上,增强病害特征提取能力。其次,针对特征融合阶段出现算法复杂度过高的问题,使用轻量级卷积GhostConv,构建一种轻量级特征融合模块,代替原网络颈部网络部分的C3模块,降低网络参数和复杂度;为避免真实路面出现光照不均,出现阴影遮挡路面病害目标而造成的病害漏检的情况,在主干网络部分,引入轻量级注意力机制TripletAttention,增强算法对病害信息上下文之间的理解能力。最后在IEEE公开数据集RDD2022和Kaggle公开数据集Road Damage上进行测试,实验结果表明,与YOLOv5s相比,mAP50在两个数据集上分别提升了1.4%和4.2%,且模型参数量仅为YOLOv5s的67.6%。 展开更多
关键词 深度学习 目标检测 路面病害 YOLOv5s 可变形卷积 轻量化
在线阅读 下载PDF
基于运动阵列微波成像与多尺度可变形卷积网络的引信目标识别方法 被引量:1
5
作者 韩燕文 闫晓鹏 +2 位作者 高晓峰 伊光华 代健 《兵工学报》 北大核心 2025年第3期214-224,共11页
针对传统调频连续波(Frequency Modulated Continuous Wave,FMCW)引信探测维度低、方位分辨能力弱导致目标识别能力不足的问题,提出基于运动阵列微波成像与多尺度可变形卷积网络(Multi-Scale Deformable Convolutional Networks,MSDCN)... 针对传统调频连续波(Frequency Modulated Continuous Wave,FMCW)引信探测维度低、方位分辨能力弱导致目标识别能力不足的问题,提出基于运动阵列微波成像与多尺度可变形卷积网络(Multi-Scale Deformable Convolutional Networks,MSDCN)的引信目标识别方法。在充分分析引信运动过程中回波相位变化规律的基础上建立FMCW运动阵列天线模型,通过运动合成扩充引信天线虚拟阵元数,大幅度提升引信方位向分辨率,实现目标距离-方位的二维高分辨成像。同时,深入分析弹目交会过程中由于目标位置、姿态、距离等状态变化形成的图像多尺度特性,构建MSDCN目标识别模型,提高引信对复杂动态交会场景下目标成像多尺度特性的自适应识别能力。实验结果表明,该方法能够显著提高引信方位分辨能力,在不同目标场景下均取得较好的成像和识别效果,对典型目标多尺度像识别准确率达到94%,-6 dB信噪比时目标识别准确率仍能达到88%。 展开更多
关键词 引信 调频连续波 运动阵列 距离-方位二维像 多尺度可变形卷积网络 目标识别
在线阅读 下载PDF
基于时空可变形卷积的多帧视频质量增强方法研究
6
作者 李娟 何月顺 +4 位作者 何璘琳 庞振宇 戴天峦 邓钰嫣 许亚男 《现代电子技术》 北大核心 2025年第9期36-42,共7页
现有的多帧视频质量增强方法通常依赖单一的相邻帧或峰值帧,未能充分利用视频流的时域特性。针对上述问题,文中提出一种基于时空可变形卷积的多帧视频质量增强方法。通过时空可变形卷积聚合时间信息,提高运动估计的精度;分别采用时空可... 现有的多帧视频质量增强方法通常依赖单一的相邻帧或峰值帧,未能充分利用视频流的时域特性。针对上述问题,文中提出一种基于时空可变形卷积的多帧视频质量增强方法。通过时空可变形卷积聚合时间信息,提高运动估计的精度;分别采用时空可变形融合和时空特征融合从峰值帧和相邻帧提取时空特征,将提取的两组特征图融合后经过特征精炼模块,输出增强特征图与待增强帧残差相加,获得最终增强帧。结果表明,文中方法在公开测试集上的性能优于对比方法,在峰值信噪比(PSNR)上取得了0.76 dB的增益,与MFQE2.0和STDF-R1相比,文中方法分别提升了0.20 dB和0.11 dB。 展开更多
关键词 时空可变形卷积 多帧视频 时空特征 视频质量增强 运动估计 特征融合
在线阅读 下载PDF
基于图插值和可变形卷积网络的序列推荐
7
作者 刘昕悦 尹海莲 +6 位作者 臧亚磊 吴文隆 卓俊男 徐凤如 陈吕莹 马维华 李博涵 《计算机研究与发展》 北大核心 2025年第10期2583-2594,共12页
序列推荐系统(sequential recommendation system,SRS)旨在基于用户的历史行为偏好预测下一步行为.尽管针对序列推荐提出了许多有效的方法,但仍然存在根本性的挑战.首先,随着在线服务的普及,推荐系统需要同时服务于热启动用户和冷启动用... 序列推荐系统(sequential recommendation system,SRS)旨在基于用户的历史行为偏好预测下一步行为.尽管针对序列推荐提出了许多有效的方法,但仍然存在根本性的挑战.首先,随着在线服务的普及,推荐系统需要同时服务于热启动用户和冷启动用户.然而,由于难以从交互数据有限的序列中学习到有效的序列依赖关系,大多数依赖于用户-项目交互的现有模型失去了优势.其次,由于现实中用户意图的可变性和主观随机性,用户在其历史序列中的行为往往是隐含和复杂的,很难从这些用户-项目交互数据中捕获这种动态转变模式.提出了一种基于图插值和可变形卷积网络的序列推荐(graph-based interpolation sequential recommender with deformable convolutional network,GISDCN)模型.对于冷启动用户,将序列对象重新构建成图,并提取全局序列中的知识来推断用户可能的偏好.为了捕捉复杂的顺序依赖关系,使用可变形卷积网络来生成更健壮和灵活的卷积核.最后,在4个数据集上进行了综合实验,验证了模型的有效性.实验结果表明,GISDCN优于大多数主流的模型. 展开更多
关键词 序列推荐 可变形卷积 图神经网络 冷启动 动态卷积
在线阅读 下载PDF
基于可变形卷积的稻粒在穗计数方法
8
作者 刘泽钰 周云成 +2 位作者 梁铖玮 李瑞阳 张羽 《农业机械学报》 北大核心 2025年第3期363-373,共11页
水稻穗粒数快速获取对筛选高产、优质品种具有重要意义,针对脱粒计数破坏稻穗拓扑结构,无法用于其他表型参数测量等问题,提出一种稻粒在穗计数方法。将稻粒在穗计数视为密度预测问题,基于可变形卷积,设计稻穗图像特征提取骨干网络,用少... 水稻穗粒数快速获取对筛选高产、优质品种具有重要意义,针对脱粒计数破坏稻穗拓扑结构,无法用于其他表型参数测量等问题,提出一种稻粒在穗计数方法。将稻粒在穗计数视为密度预测问题,基于可变形卷积,设计稻穗图像特征提取骨干网络,用少量选取的范本稻粒和稻穗图像的特征相关性,通过特征相关层生成特征相关图,在特征相关图基础上,重用并级联图像特征,预测稻粒密度分布,进而通过密度图求和,获取计数结果。试验结果表明,本文方法具有较高的计数精度,测试样本稻粒计数平均绝对误差(Mean absolute error,MAE)、均方根误差(Root mean squared error,RMSE)和平均相对误差(Mean relative error,MRE)分别为4.71、6.92和2.9%,MRE仅比人工走查高0.7个百分点,与现有基准方法(FamNet、CSRNet和ICACount)相比,MRE分别降低9.9、8.6、11.6个百分点;用可变形卷积设计的稻穗图像特征提取网络能有效提高稻粒计数精度,在参数量接近的前提下,基于该网络的模型MAE和RMSE比ResNet-50分别低19.3%和12.9%,模型具有良好的拟合能力,决定系数R^(2)达0.9405;相同网络架构下,可变形卷积比常规卷积在稻粒计数MAE和RMSE上分别降低28.9%和22.0%,MRE下降1.6个百分点;图像特征重用对提高稻粒计数精度具有重要作用,使模型在测试集上的MAE和RMSE下降27.6%和22.1%,MRE下降2.2个百分点。该方法单幅稻穗图像处理时间为0.92 s,有效提高了工作效率,可为稻穗表型检测和平台设计提供技术参考。 展开更多
关键词 水稻 稻穗表型 穗粒数 计算机视觉 可变形卷积
在线阅读 下载PDF
视差引导的可变形卷积光场图像超分辨重建方法
9
作者 杨俊刚 王应谦 +2 位作者 梁政宇 吴天昊 安玮 《信号处理》 北大核心 2025年第4期583-594,共12页
光场图像超分辨重建旨在通过利用光场图像的视角域互补信息提升光场图像分辨率,恢复图像细节并改善图像质量。当前光场图像获取设备主要为微透镜相机(例如Lytro相机、RayTrix相机)和阵列相机。其中,微透镜相机记录的不同视角图像的视差... 光场图像超分辨重建旨在通过利用光场图像的视角域互补信息提升光场图像分辨率,恢复图像细节并改善图像质量。当前光场图像获取设备主要为微透镜相机(例如Lytro相机、RayTrix相机)和阵列相机。其中,微透镜相机记录的不同视角图像的视差最大值通常小于1像素,阵列相机记录的不同视角图像的视差最大值通常大于1像素。现有光场图像超分辨重建方法大多基于微透镜相机设计,在应用于阵列相机记录的大视差光场图像时会因为视角间互补信息利用不充分导致明显的性能下降。受启发于光场视差估计与可变形卷积网络的启发,本文设计了视差引导的可变形卷积光场图像超分辨重建方法,用于获取大视差光场图像视角域互补信息。所提方法首先对光场各子视角图像进行视差估计,基于视差图生成可变形卷积偏移量,随后实现跨视角特征对齐与互补信息结合,最后通过多级蒸馏机制完成特征融合与超分辨重建。本文在领域通用的5个公开数据集上对算法的有效性进行了验证。实验结果表明,所提方法可实现领先的超分辨重建性能,并且在针对大视差具备较好的鲁棒性。 展开更多
关键词 光场 超分辨 视差估计 可变形卷积
在线阅读 下载PDF
融合注意力和可变形卷积的航空发动机叶片缺陷检测
10
作者 苏宝华 张吟龙 齐跃举 《航空发动机》 北大核心 2025年第3期160-166,共7页
针对航空发动机叶片孔探视觉缺陷检测存在的不规则缺陷漏检率高、检测实时性差的问题,提出了一种融合注意力和可变形卷积网络模型的缺陷检测算法,进行航空发动机叶片缺陷检测。为了提升不规则缺陷的检测精度,设计了DCN-C3特征提取模块,... 针对航空发动机叶片孔探视觉缺陷检测存在的不规则缺陷漏检率高、检测实时性差的问题,提出了一种融合注意力和可变形卷积网络模型的缺陷检测算法,进行航空发动机叶片缺陷检测。为了提升不规则缺陷的检测精度,设计了DCN-C3特征提取模块,采用可变形卷积结构,来改善缺陷检测网络对不同形态目标的适应能力。在此基础上,为了减少模型参数的数量,提高检测速度,设计了DSConv模块用于分解标准卷积,减小计算量。为了提高小目标的定位准确度,引入了CA注意力模块替代传统池化操作,增强检测网络对缺陷的关注度。结果表明:算法在构建的航空发动机叶片表面缺陷数据集上平均精度达到了97.1%。在嵌入式设备上,算法推理性能达到25帧/s,满足航空发动机叶片缺陷实时检测任务需求。 展开更多
关键词 缺陷检测 实时检测 不规则缺陷 叶片表面缺陷 可变形卷积 注意力机制 航空发动机
在线阅读 下载PDF
注意力可变形卷积网络的木质板材瑕疵识别 被引量:6
11
作者 朱咏梅 李玉玲 +1 位作者 奚峥皓 盛鸿宇 《西南大学学报(自然科学版)》 CSCD 北大核心 2024年第2期159-169,共11页
为了解决木材缺陷检测中人工成本高、效率低的问题,该文基于可变性卷积网络和注意力机制,提出一种端到端的神经架构模型.首先,可变形卷积网络(Deformable Convolutional Network, DCN)通过将矩形网格转换为变形网格,使模型专注于具有更... 为了解决木材缺陷检测中人工成本高、效率低的问题,该文基于可变性卷积网络和注意力机制,提出一种端到端的神经架构模型.首先,可变形卷积网络(Deformable Convolutional Network, DCN)通过将矩形网格转换为变形网格,使模型专注于具有更多有用图像信息的区域.使用可变形卷积网络可以忽略图像特征中不相关的系数,解决了传统卷积在特征中学习更多信息能力有限的问题.然后,将DCN输出馈送到门控循环单元(Gated Recurrent Unit, GRU)层以学习缺陷图像的高级特征.最后,通过关注输入图像的最重要特征,应用注意力机制加强瑕疵区域的高亮度,从而提高模型识别的准确性.使用Matlab平台在4个木质板材缺陷数据集上将该文方法与现有其他方法进行比较分析,该文方法的准确率比其他3种对比方法提高了2.4%~13.2%的维度,灵敏度提高了3.3%~16.6%的维度,特异性提高了4%~21%的维度.实验结果表明,该文方法在检测精度和其他各个性能方面均优于现有方法,最佳准确率为99.2%,证明了该文方法的有效性. 展开更多
关键词 可变形卷积网络 注意力机制 瑕疵识别 缺陷 深度学习 木质板材
在线阅读 下载PDF
融合CBAM注意力机制与可变形卷积的车道线检测 被引量:3
12
作者 胡丹丹 张忠婷 牛国臣 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2150-2160,共11页
为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响... 为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响应;引入可变形卷积替换常规卷积,用带偏移的采样学习车道线的几何形变,提高卷积核的建模能力;基于行锚分类思想,对行方向上的位置进行选择和分类分析,预测车道线的位置信息,提高车道线检测模型的实时性。在车道线公开数据集上对所提CADCN方法进行训练及验证,在满足实时性的情况下,CADCN方法在TuSimple数据集上准确率达到96.63%,在CULane数据集上综合评估指标F1平均值达到74.4%,验证了所提方法的有效性。 展开更多
关键词 车道线检测 特征提取 注意力机制 可变形卷积网络 行锚分类
在线阅读 下载PDF
基于改进可变形卷积的FDC-YOLO v8水下生物目标检测方法研究 被引量:5
13
作者 袁红春 李春桥 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期140-146,共7页
水下生物目标检测是实现水下机器人自动化捕捞的关键性技术。针对水下生物目标检测任务中存在的目标重叠、遮挡以及目标尺度小而导致的误检、漏检等问题,提出了一种基于改进YOLO v8n的水下生物目标检测算法FDC-YOLO v8。首先,在主干网... 水下生物目标检测是实现水下机器人自动化捕捞的关键性技术。针对水下生物目标检测任务中存在的目标重叠、遮挡以及目标尺度小而导致的误检、漏检等问题,提出了一种基于改进YOLO v8n的水下生物目标检测算法FDC-YOLO v8。首先,在主干网络中使用融合可变形卷积网络的FDC模块,以增强模型特征提取能力,提升其提取特征的丰富度。其次,引入融合分数阶傅里叶变换和空间注意力机制的FrSAConv模块,进一步分离多样目标特征,增强模型对多种特征的感知能力。最后,引入Wise-IoU损失函数作为模型边界框损失函数,以更好地解决目标不平衡以及尺度差异的问题。使用RUIE数据集进行实验,水下生物包括海胆、海星、海参、扇贝。实验结果表明,改进后的FDC-YOLO v8的平均精度均值达到85.3%,较基准模型提升2.6个百分点,推理速度达到769 f/s,在目标重叠、遮挡以及小尺度目标的水下生物目标检测中有更好的表现。 展开更多
关键词 水下生物识别 目标检测 YOLO v8n Wise-IoU 可变形卷积网络 分数阶傅里叶变换
在线阅读 下载PDF
稀疏可变形卷积与高分辨率融合的接触网螺栓病害检测
14
作者 陈永 安卓奥博 张娇娇 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第7期2989-3000,共12页
列车长期运行产生的震动易导致接触网螺栓处于松动、脱落等不良状态,接触网取流异常会严重影响行车安全。针对高速铁路接触网螺栓病害检测时,易受复杂背景干扰及螺栓松动病害难以检测等问题,提出一种稀疏可变形卷积与高分辨率融合的接... 列车长期运行产生的震动易导致接触网螺栓处于松动、脱落等不良状态,接触网取流异常会严重影响行车安全。针对高速铁路接触网螺栓病害检测时,易受复杂背景干扰及螺栓松动病害难以检测等问题,提出一种稀疏可变形卷积与高分辨率融合的接触网螺栓病害检测方法。首先,构建稀疏动态可变形卷积构成的特征提取网络,通过增大感受野范围,来捕捉不同尺度下螺栓的形状特征,加强模型对螺栓小尺寸对象特征的提取能力。然后,设计高分辨率特征金字塔融合模块,将螺栓深层特征和浅层特征的高分辨率特征图进行充分融合,提高多尺度特征图的利用率。其次,提出基于连通域统计的螺栓松动判别方法,通过统计被截断螺栓的连通域个数,完成螺栓松动病害状态检测。最后,由高速铁路接触网螺栓检测试验得出:所提方法可以准确检测螺栓的缺失和松动病害,且具有较高的检测精度,相比改进前Mask R-CNN检测方法准确率增加了41.4个百分点、召回率增加了27.3个百分点、像素精确度提升28.11个百分点、F1-score达83.4%。同时,对接触网螺栓网络模型的检测效率进行试验,较Mask R-CNN的浮点计算效率提升了36.23%。对不同场景下接触网螺栓检测对比试验表明,所提方法具有良好的适应性和精确度,对于螺栓松动和缺失病害检测提供了更为准确的方法,对后期接触网智能化检测具有一定的参考意义。 展开更多
关键词 高铁接触网 螺栓病害检测 稀疏动态可变形卷积 Mask R-CNN 高分辨率融合
在线阅读 下载PDF
基于可变形卷积网络和YOLOv8的衬砌裂缝检测模型研究 被引量:4
15
作者 孙己龙 刘勇 +3 位作者 路鑫 王志丰 王亚琼 侯小龙 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第8期181-189,共9页
为解决裂缝性状发育随机度高、标注框分辨率低、分布密集易重叠、目标相对小等因素引起的智能检测精度及效率差等问题,基于改进可变形卷积神经网络对YOLOv8骨干网络进行融合,提出1种能够适应隧道复杂场景的裂缝检测模型D-YOLO。模型首... 为解决裂缝性状发育随机度高、标注框分辨率低、分布密集易重叠、目标相对小等因素引起的智能检测精度及效率差等问题,基于改进可变形卷积神经网络对YOLOv8骨干网络进行融合,提出1种能够适应隧道复杂场景的裂缝检测模型D-YOLO。模型首先对第3版可变形卷积网络(DCNv3)的空间聚合权重softmax归一化步骤进行去除以增强网络卷积效率,再利用新DCNv4对骨干网络C2f卷积模块进行融合以提升对网络图像中不同尺度裂缝性状及空间位置变化的细节感知能力,并采用自建裂缝数据集对SSD,Faster-RCNN,YOLOv5和YOLOv84种检测模型进行对比验证。研究结果表明:D-YOLO的F_(1)分数为80.82%,mAP@0.5为86.90%,相较于SSD、Faster-RCNN、YOLOv5和YOLOv8都有所提升;D-YOLO的单张图像检测速度为20.36 ms,相较于各种对比模型分别加快37.06%、65.33%、45.22%和28.39%;同时,D-YOLO对衬砌裂缝图像特征关注范围有所增加。研究结果可为隧道运营期内衬砌安全检测提供新思路。 展开更多
关键词 隧道工程 结构安全 可变形卷积网络 衬砌裂缝 YOLOv8
在线阅读 下载PDF
基于可变形卷积与自监督对比学习的GIS局部放电诊断方法 被引量:1
16
作者 张瑞霖 张悦 +3 位作者 孙晓兰 钱勇 盛戈皞 江秀臣 《高电压技术》 EI CAS CSCD 北大核心 2024年第11期5022-5033,共12页
在高压变电站现场,气体绝缘组合电器(gas insulated switchgear,GIS)局部放电诊断准确率受到有标签样本数量的制约。为解决常规局部放电诊断方法中无法使用无标签数据、难以克服训练样本与待测试样本差异等问题,提出了一种基于可变形卷... 在高压变电站现场,气体绝缘组合电器(gas insulated switchgear,GIS)局部放电诊断准确率受到有标签样本数量的制约。为解决常规局部放电诊断方法中无法使用无标签数据、难以克服训练样本与待测试样本差异等问题,提出了一种基于可变形卷积与自监督对比学习的GIS局部放电诊断方法。首先通过比较未标注数据样本之间的相似性与差异性训练特征提取网络,得到输入数据的特征表示,之后利用有标签数据训练分类器,学习不同局放数据特征表示的缺陷类别,最后将待测试样本输入模型,实现局部放电诊断。为了进一步提高模型在特征提取过程中的感知能力,引入可变形卷积神经网络和空间变换模块,增强卷积核对特征图的适应性。结果表明:使用自监督对比学习可以充分利用无标签数据,实现高效特征捕捉,在有标签数据量不充足的情况下,通过无标签数据进行预训练的模型在局部放电诊断准确率上平均提高9.34%。该文提出的自监督对比学习方法可以为局部放电缺陷诊断提供一种新的解决方案。 展开更多
关键词 局部放电 GIS 自监督 对比学习 可变形卷积
在线阅读 下载PDF
InternDiffuseDet:结合可变形卷积和扩散模型的目标检测方法 被引量:4
17
作者 袁志祥 高永奇 《计算机工程与应用》 CSCD 北大核心 2024年第12期203-215,共13页
针对现有目标检测中存在的漏检和误检、特征提取能力有限、处理复杂场景时检测精度不高等问题,基于DiffusionDet进行改进,提出了一种结合可变形卷积和扩散模型的目标检测方法。以模型在进入检测头之前需要更多且优质的特征图为核心思想... 针对现有目标检测中存在的漏检和误检、特征提取能力有限、处理复杂场景时检测精度不高等问题,基于DiffusionDet进行改进,提出了一种结合可变形卷积和扩散模型的目标检测方法。以模型在进入检测头之前需要更多且优质的特征图为核心思想,在主干网络中引入InternImage和DCNv3可变形卷积算子提升模型的感受野和非线性建模能力。对中间层的FPN特征金字塔进行改进,设计了一种基于选择性加权的特征金字塔CS-FPN;利用深度可分离卷积实现通道和区域的分离,同时采用CARAFE算子替代传统的上采样操作,提高分辨率和语义信息的传递;随后利用SGE注意力机制对特征图进行重组,以确保特征图在扩散的过程中保留更多的层次化信息。在特征图进入检测头之前,进行DDIM的扩散操作,获得不同时刻的特征图,以扩充检测特征图的数量。最后在目标框匹配和损失函数方面采用EIOU算法以处理目标框之间的位置偏移和尺度差异。实验数据显示,在COCO数据集和道路检测数据集上,改进后的模型在相同的实验环境下比原有模型分别提升了3.8和3.6个百分点。实验结果表明该方法在提高目标检测的准确性和鲁棒性方面具有一定的潜力,并为解决现实场景中的目标检测问题提供了新的思路和方法。 展开更多
关键词 DiffusionDet 可变形卷积 扩散模型 特征金字塔 损失函数
在线阅读 下载PDF
基于可变形卷积与注意力的无人机航拍车辆目标检测算法 被引量:3
18
作者 梁刚 赵良军 +2 位作者 宁峰 席裕斌 何中良 《现代电子技术》 北大核心 2024年第23期138-146,共9页
在无人机航拍图像中,车辆目标较小,尺度变化大,背景复杂且分布密集,导致精度过低的问题。因此,提出一种基于改进的YOLOv5的无人机航拍图像车辆目标检测算法。增加小目标检测层,减少小目标特征丢失,从而提高小目标检测精度;设计了一个名... 在无人机航拍图像中,车辆目标较小,尺度变化大,背景复杂且分布密集,导致精度过低的问题。因此,提出一种基于改进的YOLOv5的无人机航拍图像车辆目标检测算法。增加小目标检测层,减少小目标特征丢失,从而提高小目标检测精度;设计了一个名为DAC的新特征提取模块,它融合了标准卷积、可变形卷积和通道空间注意力机制,旨在增强模型对车辆尺度变化的感知能力,并让模型聚焦于复杂背景下的车辆目标;将损失函数更改为Focal-EIoU,以加速模型收敛速度,同时提高小目标车辆的检测精度。使用Soft-NMS代替YOLOv5中采用的非极大值抑制,从而改善目标密集场景下的漏检和误检情况。在VisDrone2019数据集上进行了消融实验、对比实验和结果可视化。改进后的模型平均精度(mAP)比基线模型提高了8.4%,参数量和GFLOPs仅增加了4.8%和3.79%,验证了改进策略的有效性和优越性。 展开更多
关键词 无人机图像 车辆检测 小目标检测 可变形卷积 损失函数 非极大值抑制
在线阅读 下载PDF
基于可变形卷积与特征融合的机场道面裂缝检测算法 被引量:7
19
作者 李海丰 景攀 韩红阳 《南京航空航天大学学报》 CAS CSCD 北大核心 2021年第6期981-988,共8页
机场道面裂缝具有形态多变、宽度狭小、长短不一、且空间走势呈自由曲线的不规则特征,现有算法检测效果不佳。针对此问题,本文构建了一种基于可变形卷积与特征融合的神经网络(Deformable convolution and feature fusion neural network... 机场道面裂缝具有形态多变、宽度狭小、长短不一、且空间走势呈自由曲线的不规则特征,现有算法检测效果不佳。针对此问题,本文构建了一种基于可变形卷积与特征融合的神经网络(Deformable convolution and feature fusion neural network,DFNet)模型。首先由可变形卷积模块来强化特征提取网络对裂缝形态特征的学习;然后经多尺度卷积模块捕获不同感受野下裂缝的全局信息;最后通过特征融合模块来提取裂缝不同层次的特征,通过融合裂缝低级特征与高级特征,实现对机场道面裂缝的准确分割。在采集的实际机场道面裂缝数据集上,与其他6种现有算法进行了对比实验,本文算法在像素级分割的F1-Score上达到了90.95%,效果优于全部对比算法。DFNet算法提高了对机场道面裂缝检测的能力,实验结果表明本文算法较好地达到了工程实际要求。 展开更多
关键词 人工智能 机场道面裂缝检测 可变形卷积与特征融合的神经网络 可变形卷积 多尺度卷积 特征融合
在线阅读 下载PDF
一种迁移学习和可变形卷积深度学习的蝴蝶检测算法 被引量:13
20
作者 李策 张栋 +3 位作者 杜少毅 朱子重 贾盛泽 曲延云 《自动化学报》 EI CSCD 北大核心 2019年第9期1772-1782,共11页
针对自然生态蝴蝶多种特征检测的实际需求,以及生态环境下蝴蝶检测效率低、精度差问题,本文提出了一种基于迁移学习和可变形卷积深度神经网络的蝴蝶检测算法(Transfer learning and deformable convolution deep learning network,TDDNE... 针对自然生态蝴蝶多种特征检测的实际需求,以及生态环境下蝴蝶检测效率低、精度差问题,本文提出了一种基于迁移学习和可变形卷积深度神经网络的蝴蝶检测算法(Transfer learning and deformable convolution deep learning network,TDDNET).该算法首先使用可变形卷积模型重建ResNet-101卷积层,强化特征提取网络对蝴蝶特征的学习,并以此结合区域建议网络(Region proposal network, RPN)构建二分类蝴蝶检测网络,以下简称DNET-base;然后在DNET-base的模型上,构建RPN网络来指导可变形的敏感位置兴趣区域池化层,以便获得多尺度目标的评分特征图和更准确的位置,再由弱化非极大值抑制(Soft non-maximum suppression, Soft-NMS)精准分类形成TDDNET模型.随后通过模型迁移,将DNET-base训练参数迁移至TDDNET,有效降低数据分布不均造成的训练困难与检测性能差的影响,再由Fine-tuning方式快速训练TDDNET多分类网络,最终实现了对蝴蝶的精确检测.所提算法在854张蝴蝶测试集上对蝴蝶检测结果的mAP0.5为0.9414、mAP0.7为0.9235、检出率DR为0.9082以及分类准确率ACC为0.9370,均高于在同等硬件配置环境下的对比算法.对比实验表明,所提算法对生态照蝴蝶可实现较高精度的检测. 展开更多
关键词 蝴蝶生态照 可变形卷积 迁移学习 深度卷积神经网络
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部