期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
一种用于数据流分类的递归反向传播算法
1
作者 刘展华 文益民 刘祥 《济南大学学报(自然科学版)》 北大核心 2025年第3期396-403,共8页
针对传统深度神经网络因数据流中发生概念漂移而出现分类准确率较低的问题,为了增强深度神经网络模型的学习能力,提出一种用于数据流分类的递归反向传播算法。该算法融合在线梯度下降算法的强大数据流学习能力与递归最小二乘法的快速收... 针对传统深度神经网络因数据流中发生概念漂移而出现分类准确率较低的问题,为了增强深度神经网络模型的学习能力,提出一种用于数据流分类的递归反向传播算法。该算法融合在线梯度下降算法的强大数据流学习能力与递归最小二乘法的快速收敛特性,当数据流发生概念漂移时,首先利用递归最小二乘法逐步训练神经网络模型,达到一个相对稳定的状态后切换至在线梯度下降算法,进一步训练深度神经网络模型,实现更深层次的数据流学习,优化深度神经网络模型的分类性能,并在多个人工数据集和真实数据集中实验验证所提算法的有效性。结果表明:所提算法具有优异的概念漂移适应能力,数据流分类准确率超越仅使用在线梯度下降算法或递归最小二乘法训练神经网络模型的多种算法。 展开更多
关键词 在线深度学习 在线梯度下降算法 递归最小二乘法 反向传播 深度神经网络 概念漂移
在线阅读 下载PDF
FNN上的反向传播学习算法 被引量:2
2
作者 毛国君 宋广军 杨名生 《计算机应用与软件》 CSCD 1998年第4期34-38,共5页
近几年来,模糊神经网络(FNN)的研究引起了广泛的注意。本文对FNN上的反向传播学习方法加以讨论。使用输入均值和输出权重参量来进行模糊化和反模糊化处理,学习的目的是调整这两个参量到合适的值。
关键词 模糊神经网络 反向传播学习 算法
在线阅读 下载PDF
模糊系统反向传播学习算法在系统辨识中的应用
3
作者 张景元 韩江洪 高隽 《计算机研究与发展》 EI CSCD 北大核心 1998年第2期128-132,共5页
文中提出了一种模糊逻辑系统的网络模型,给出了相应的反向传播学习算法,并将其用于非线性系统的辨识,构造了一种模糊动态辨识器.
关键词 反向传播 学习算法 模糊系统 系统辨识
在线阅读 下载PDF
基于可变学习率BP算法的空调控制系统的研究 被引量:1
4
作者 马飞 童维勤 +1 位作者 支小莉 王婷 《计算机工程与设计》 CSCD 北大核心 2010年第9期1998-2001,共4页
通过分析控制器参数学习率和控制器性能之间的关系,设计一种基于可变学习速率反向传播算法VLRBP和模糊神经元网络的变频空调控制系统。该系统不仅可以通过反传误差信号训练控制器参数,而且可以根据网络的当前状态朝最优化方向调整控制... 通过分析控制器参数学习率和控制器性能之间的关系,设计一种基于可变学习速率反向传播算法VLRBP和模糊神经元网络的变频空调控制系统。该系统不仅可以通过反传误差信号训练控制器参数,而且可以根据网络的当前状态朝最优化方向调整控制器参数的学习率。实验结果表明,该控制系统不仅比传统的空调PID控制器和模糊控制器具有更好的控制性能,而且相比基于标准BP算法和动量BP算法的模糊神经网络控制系统,也具有更快的收敛速度和更好的控制精确度。 展开更多
关键词 变频空调 模糊控制 模糊神经元网络 可变学习速率反向传播算法 室内温度模型
在线阅读 下载PDF
基于自适应学习速率的改进型BP算法研究 被引量:19
5
作者 杨甲沛 李锵 +1 位作者 刘郑 袁晓琳 《计算机工程与应用》 CSCD 北大核心 2009年第11期56-58,66,共4页
从感知器的结构及学习规则无法执行异或问题出发,用神经网络中的BP网络来解决异或问题,消除了感知器的局限性,但BP算法在具体实现中常会出现一些问题,如:收敛速度缓慢且与其他参数存在较强的耦合关系,局部极小等。对此,从前馈神经网络... 从感知器的结构及学习规则无法执行异或问题出发,用神经网络中的BP网络来解决异或问题,消除了感知器的局限性,但BP算法在具体实现中常会出现一些问题,如:收敛速度缓慢且与其他参数存在较强的耦合关系,局部极小等。对此,从前馈神经网络的原理出发,提出了一种自适应学习速率因子方法,用于对BP算法的改进,并将改进后的算法用于二维XOR问题及多维XOR问题的学习中。仿真实验证明,改进后的算法可显著提高网络的学习速度,且学习过程具有良好的收敛性及较强的鲁棒性。 展开更多
关键词 神经网络 异或 自适应学习速率 反向传播
在线阅读 下载PDF
适用于海量负荷数据分类的高性能反向传播神经网络算法 被引量:40
6
作者 刘洋 刘洋1 许立雄 《电力系统自动化》 EI CSCD 北大核心 2018年第21期96-103,共8页
负荷分类对于指导电网发用电规划与保证电网可靠运行具有重要意义。面向负荷数据海量化与复杂化趋势,传统负荷分类方法已无法满足用电大数据分析要求。首先,针对用户侧数据体量大、类型多、速度快等特点,在Spark平台上将反向传播神经网... 负荷分类对于指导电网发用电规划与保证电网可靠运行具有重要意义。面向负荷数据海量化与复杂化趋势,传统负荷分类方法已无法满足用电大数据分析要求。首先,针对用户侧数据体量大、类型多、速度快等特点,在Spark平台上将反向传播神经网络(BPNN)算法并行化,实现对海量负荷数据的高效分类。然后,通过对训练样本抽样分块以降低各网络学习时间,针对分布式后BPNN基分类器由于学习样本缺失潜在的准确度下降问题,采用集成学习予以改善。并通过BPNN学习不同训练样本块构建差异化基分类器,对基分类结果多数投票得到最终分类结果。另外,提供了一种基于K-means和K-medoids聚类的负荷数据训练样本选取方法。算例表明所提方法既能对负荷曲线有效分类,又能大幅提高海量数据的处理效率。 展开更多
关键词 负荷分类 Spark平台 反向传播神经网络 集成学习 聚类算法
在线阅读 下载PDF
动态调整学习速率的BP改进算法 被引量:7
7
作者 王玲芝 王忠民 《计算机应用》 CSCD 北大核心 2009年第7期1894-1896,共3页
在基本反向传播(BP)算法中,学习速率往往固定不变,限制了网络的收敛速度和稳定性。因此,提出一种动态调整BP网络学习速率的算法,以BP网络输出层节点的实际输出值与期望输出值的平均绝对值误差及其变化率为自变量,找出学习速率与两个自... 在基本反向传播(BP)算法中,学习速率往往固定不变,限制了网络的收敛速度和稳定性。因此,提出一种动态调整BP网络学习速率的算法,以BP网络输出层节点的实际输出值与期望输出值的平均绝对值误差及其变化率为自变量,找出学习速率与两个自变量之间的函数关系。根据网络的实际学习情况,对学习速率进行动态调整。实例仿真结果表明,改进的BP算法在保持网络稳定性的同时,具有更快的收敛速度。而且,该算法只需恰当地选取几个参数,不受条件限制,因此具有普遍的适用性。 展开更多
关键词 反向传播算法 学习速率 动态调整 平均绝对值误差 变化率
在线阅读 下载PDF
一种改进的反向传播神经网络算法 被引量:4
8
作者 邱浩 王道波 张焕春 《应用科学学报》 CAS CSCD 2004年第3期384-387,共4页
在标准反向传播神经网络算法的基础上,提出了一种改进的反向传播神经网络算法.通过对每个处理单元增加3个参数来增强作用函数,且3个参数与连接权一样,在学习过程中进行实时更新.此算法提高了学习速度,且减少了进入局部最小点的可能性.通... 在标准反向传播神经网络算法的基础上,提出了一种改进的反向传播神经网络算法.通过对每个处理单元增加3个参数来增强作用函数,且3个参数与连接权一样,在学习过程中进行实时更新.此算法提高了学习速度,且减少了进入局部最小点的可能性.通过XOR问题的仿真证明了改进算法的有效性. 展开更多
关键词 反向传播 神经网络 误差 模式 传播 学习算法
在线阅读 下载PDF
一种新的快速收敛的反向传播算法 被引量:8
9
作者 武妍 王守觉 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第8期1092-1095,共4页
提出了一种新的快速的误差反向传播算法 .这种方法从神经网络的权值调节公式入手 ,通过避免过早饱和、加大权值调节的幅度等手段来加快收敛 .并通过对两个奇偶问题、一个函数逼近问题的仿真 ,验证了所提出的算法的有效性 .结果表明 ,所... 提出了一种新的快速的误差反向传播算法 .这种方法从神经网络的权值调节公式入手 ,通过避免过早饱和、加大权值调节的幅度等手段来加快收敛 .并通过对两个奇偶问题、一个函数逼近问题的仿真 ,验证了所提出的算法的有效性 .结果表明 ,所提出的算法在收敛速度等方面大大优于通常的BP(反向传播 )算法、带动量项的BP算法以及其他的一些改进的算法 . 展开更多
关键词 神经网络 反向传播 学习算法
在线阅读 下载PDF
综合反向传播算法 被引量:1
10
作者 王科俊 金鸿章 李国斌 《控制理论与应用》 EI CAS CSCD 北大核心 1999年第5期739-743,共5页
提出一种用于多层前向神经网络的综合反向传播算法.该算法使用了综合考虑绝对误差和相对误差的广义指标函数,采用了在网络输出空间搜索的反传技术,具有动态自调整学习率和动量因子,有神经元激活特性自调整、减少平台现象和消除学习... 提出一种用于多层前向神经网络的综合反向传播算法.该算法使用了综合考虑绝对误差和相对误差的广义指标函数,采用了在网络输出空间搜索的反传技术,具有动态自调整学习率和动量因子,有神经元激活特性自调整、减少平台现象和消除学习过程中不平衡现象的能力.对比实验表明该算法有比基本BP算法快得多的收敛速度,并能取得全局最优解. 展开更多
关键词 神经网络 学习算法 反向传播算法
在线阅读 下载PDF
反向传播神经网络联合遗传算法对复合材料模量的预测 被引量:7
11
作者 王卓鑫 赵海涛 +4 位作者 谢月涵 任翰韬 袁明清 张博明 陈吉安 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第10期1341-1348,共8页
为减少测试成本和缩短设计周期,基于机器学习方法对树脂基复合材料模量的预报方法进行了研究.采用一种全新预测方法——神经网络联合遗传算法(GA-ANN),将T800/环氧复合材料的强度、泊松比和失效应变作为反向传播(BP)神经网络的3个输入变... 为减少测试成本和缩短设计周期,基于机器学习方法对树脂基复合材料模量的预报方法进行了研究.采用一种全新预测方法——神经网络联合遗传算法(GA-ANN),将T800/环氧复合材料的强度、泊松比和失效应变作为反向传播(BP)神经网络的3个输入变量,在遗传算法(GA)中得出最优阈值和权重,并将所得数值赋给对应的网络参数,更新BP神经网络以更高的准确率预测树脂基复合材料的模量;同等条件下,用Adam算法进行预测.对比这两种方法,结果充分证明了GA-ANN的可行性. 展开更多
关键词 机器学习 反向传播神经网络 遗传算法 复合材料模量 Adam算法
在线阅读 下载PDF
一种前馈神经网络的快速学习算法 被引量:13
12
作者 李晓东 胡志恒 虞厥邦 《信号处理》 CSCD 2004年第2期184-187,共4页
本文提出一种前馈神经网络的快速学习算法。与传统的BP方法相比,本算法有两个改进之处,一是同时将网络的非线性输出误差与线性输出误差作为待优化的目标函数,二是改进了学习过程中误差的反向传播因子。仿真结果表明,使用本文的算法训练... 本文提出一种前馈神经网络的快速学习算法。与传统的BP方法相比,本算法有两个改进之处,一是同时将网络的非线性输出误差与线性输出误差作为待优化的目标函数,二是改进了学习过程中误差的反向传播因子。仿真结果表明,使用本文的算法训练前馈神经网络,计算复杂度略高于BP算法,但学习速度却有显著的提高。 展开更多
关键词 前馈神经网络 快速学习算法 反向传播 BP算法
在线阅读 下载PDF
基于反馈调控参数的BP学习算法研究 被引量:5
13
作者 苏小红 王亚东 马培军 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2005年第10期1311-1314,共4页
为解决经遗传算法优化后的BP网络极易陷入饱和区域而导致网络学习停滞的问题,基于神经生理解剖学关于神经电位脉冲发放系统和神经递质系统的耦合机理,提出一种改进的基于反馈调控参数的BP学习算法,通过反馈调控参数对神经元的节点输出... 为解决经遗传算法优化后的BP网络极易陷入饱和区域而导致网络学习停滞的问题,基于神经生理解剖学关于神经电位脉冲发放系统和神经递质系统的耦合机理,提出一种改进的基于反馈调控参数的BP学习算法,通过反馈调控参数对神经元的节点输出进行扰动,避免学习过程中发生权值调整量趋于0的问题,从而解决经遗传算法优化后的BP网络容易出现的饱和区域问题.仿真实验结果表明,该方法能有效克服饱和区域引起的学习停滞问题,提高BP网络对遗传算法优化结果的精确定位能力,而且还具有收敛速度快和稳定性好的优点和在较大权值空间中的寻优能力. 展开更多
关键词 多层前馈网络 误差反向传播学习算法 饱和区域问题
在线阅读 下载PDF
复合对向-反向传播人工神经网络模型及其应用 被引量:1
14
作者 张尊建 余书勤 +1 位作者 相秉仁 安登魁 《中国药科大学学报》 CAS CSCD 北大核心 1996年第11期701-704,共4页
组合Kohonen竞争学习和反向传播学习的优点,本文首次提出了复合对向-反向传播人工神经网络模型,该模型较好地体现了生物神经网络系统信息处理时的自适应、自组织、分布式存贮及并行处理等特点。它保留了反向传播网络的优点,... 组合Kohonen竞争学习和反向传播学习的优点,本文首次提出了复合对向-反向传播人工神经网络模型,该模型较好地体现了生物神经网络系统信息处理时的自适应、自组织、分布式存贮及并行处理等特点。它保留了反向传播网络的优点,同时较后者更易收敛,计算时间缩短,网络参数设置也更为自由。通过在临床精液检查结果分析中的成功应用,证明了该系统的有效性和可靠性。 展开更多
关键词 人工神经网络 学习算法 模型 复合对向 反向传播
在线阅读 下载PDF
自底向上加快神经网络学习的算法
15
作者 杨钟瑾 《湖南师范大学自然科学学报》 EI CAS 北大核心 2006年第3期39-44,共6页
介绍了一种加快神经网络学习的改进算法.这种改进算法结合采用快速自底向上构造神经网络算法和动态优化学习参数算法.首先,快速自底向上构造神经网络算法自动地构建神经网络的优化结构;随后,动态优化学习参数算法动态地调整和选取优化... 介绍了一种加快神经网络学习的改进算法.这种改进算法结合采用快速自底向上构造神经网络算法和动态优化学习参数算法.首先,快速自底向上构造神经网络算法自动地构建神经网络的优化结构;随后,动态优化学习参数算法动态地调整和选取优化的学习参数.实验结果显示,这种改进算法能自动有效地构造网络的优化结构,与其它算法相比,具有更好的分类性能、优化的网络结构和更快的学习速度. 展开更多
关键词 神经网络 瀑流关联 自底向上 学习参数优化 分类 反向传播算法
在线阅读 下载PDF
基于机器学习算法的社区老年衰弱前期风险预测模型构建 被引量:19
16
作者 李彩福 赵伟 +5 位作者 叶秀春 赵东丽 邹继华 董海娜 周英 许丽娟 《护理学杂志》 CSCD 北大核心 2022年第15期84-88,共5页
目的构建并验证社区老年衰弱前期风险预测模型,为早期识别社区老年衰弱前期高危人群提供参考。方法筛选542名社区无衰弱和衰弱前期老年人作为建模组,运用反向传播神经网络机器学习算法构建衰弱前期预测模型;再筛选205名社区无衰弱和衰... 目的构建并验证社区老年衰弱前期风险预测模型,为早期识别社区老年衰弱前期高危人群提供参考。方法筛选542名社区无衰弱和衰弱前期老年人作为建模组,运用反向传播神经网络机器学习算法构建衰弱前期预测模型;再筛选205名社区无衰弱和衰弱前期老年人作为验证组,利用受试者工作特征曲线对构建模型的预测效能进行时间跨度验证。结果按照重要性排序,社区老年衰弱前期危险因素分别为年龄、住院史、跌倒史、运动量少、多病共存、抑郁倾向、认知功能下降、文化程度低、日常生活能力下降及多重用药。以logistic回归模型作为参考,反向传播神经网络预测效能佳,AUC为0.891,95%CI(0.846~0.918),灵敏度为0.858,特异度为0.782。结论反向传播神经网络模型预测效能优于logistic回归模型,社区工作人员可通过预防跌倒、运动干预、慢病健康教育、抑郁及认知干预等预防老年衰弱前期的发生发展。 展开更多
关键词 社区 老年人 衰弱前期 危险因素 预测模型 机器学习算法 反向传播神经网络
在线阅读 下载PDF
基于改进邻域粗糙集和优化BPNN的火灾预测算法 被引量:4
17
作者 许诗卉 徐久成 +2 位作者 瞿康林 杨杰 周长顺 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期192-201,共10页
针对传统森林火灾检测算法精度低,以及大规模、多特征的火灾数据存在冗余信息等问题,该文提出了一种基于改进邻域粗糙集的优化反向传播神经网络(BPNN)火灾预测方法。首先,考虑到数据集具有高维特征空间和高度特征冗余等特点,设计出一种... 针对传统森林火灾检测算法精度低,以及大规模、多特征的火灾数据存在冗余信息等问题,该文提出了一种基于改进邻域粗糙集的优化反向传播神经网络(BPNN)火灾预测方法。首先,考虑到数据集具有高维特征空间和高度特征冗余等特点,设计出一种基于混沌反学习蝙蝠(BA)算法的邻域粗糙集特征选择算法,对火灾原始数据集进行特征寻优,得到约简属性子集;然后,构建BA算法优化的BPNN预测模型,将约简属性子集输入该模型中,得到火灾预测的结果;最后,通过平均分类准确度、F1值、精确度、曲线面积、召回率、平均误差率这6种评价指标,在UCI公开森林火灾数据集上分析和检验模型的分类性能。在2个数据集上的实验结果显示,基于混沌反学习策略的算法准确率为94.3%和52.7%,与邻域粗糙集结合后准确率达到98.1%和59.6%,证明了该文算法具备较高的检测精度。 展开更多
关键词 反向传播神经网络 邻域粗糙集 蝙蝠算法 反向学习 混沌映射 森林火灾 机器学习 预测模型
在线阅读 下载PDF
APSO-BPNN模型在滨海环境中铁质材料腐蚀速率预测中的应用
18
作者 杨彪 肖佳 +2 位作者 欧阳晨 朱金晨 闫莹 《腐蚀与防护》 CAS CSCD 北大核心 2024年第12期72-79,共8页
针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了... 针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了APSO-BPNN模型与传统BPNN模型的预测效果。结果表明:APSO-BPNN模型在训练集上的决定系数R_(2)提高了23.65%,其在测试集上的R2达到0.9258,平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别下降至11.55、22.26%和14.43。 展开更多
关键词 铁质材料 自适应粒子群优化(APSO)算法 反向传播神经网络(BPNN) 腐蚀速率 预测模型
在线阅读 下载PDF
基于改进Fisher准则的深度卷积神经网络识别算法 被引量:24
19
作者 孙艳丰 齐光磊 +1 位作者 胡永利 赵璐 《北京工业大学学报》 CAS CSCD 北大核心 2015年第6期835-841,共7页
为了有效利用深度学习技术自动提取特征的能力,并解决当训练样本量减少或者迭代次数降低时识别性能急速下降的问题,提出了基于Fisher准则的深度学习算法.该方法在前馈传播时,采用卷积神经网络自动提取图像的结构信息等特征,同时利用卷... 为了有效利用深度学习技术自动提取特征的能力,并解决当训练样本量减少或者迭代次数降低时识别性能急速下降的问题,提出了基于Fisher准则的深度学习算法.该方法在前馈传播时,采用卷积神经网络自动提取图像的结构信息等特征,同时利用卷积网络共享权值和池化、下采样等方法减少了权值个数,降低了模型复杂度;在反向传播权值调整时,采用了基于Fisher的约束准则.在权值的迭代调整时既考虑误差的最小化,又同时让样本保持类内距离小,类间距离大,从而使权值能更加快速地逼近有利于分类的最优值,当样本量不足或训练迭代次数不多时可有效地提高系统的识别率.大量的实验结果证明:该基于Fisher准则的混合深度学习算法在标签样本不足或者较少训练次数的情况下依然能达到较好的识别效果. 展开更多
关键词 深度学习 卷积神经网络 FISHER准则 反向传播(BP)算法 人脸识别 手写字识别
在线阅读 下载PDF
一类自适应算法及其应用 被引量:16
20
作者 于霞 宋凌锋 陈学允 《系统仿真学报》 CAS CSCD 2001年第4期494-497,共4页
在许多优化问题中,寻找最优解并不是唯一目的,更重要的目标往往是“进步”,算法的优化作用更在于维持一个稳定的改进过程。本文从这一角度出发进行了对传统遗传算法的改进,强化了其渐进收敛和进化能力;并考虑与反向传播学习算法的... 在许多优化问题中,寻找最优解并不是唯一目的,更重要的目标往往是“进步”,算法的优化作用更在于维持一个稳定的改进过程。本文从这一角度出发进行了对传统遗传算法的改进,强化了其渐进收敛和进化能力;并考虑与反向传播学习算法的有机结合以提高训练精度及泛化能力。以一类解析型模糊系统的建模过程为例进行的仿真研究表明,新算法更适用于这类优化问题,能够在更短的时间内有效地改善系统性能;同时,具有很强的自适应性,应用简便也是它的主要优点之一。 展开更多
关键词 遗传算法 反向传播学习算法 模糊系统 自适应算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部