放宽了传统GARCH模型参数形式的假定,将广义可加模型引入条件方差的估计,改进了[Bhlmann P,McNeil A J.An algorithm for nonparametric GARCH modelling.Computational Statisticsand Data Analysis,2002,40(4):665-683]提出的迭代...放宽了传统GARCH模型参数形式的假定,将广义可加模型引入条件方差的估计,改进了[Bhlmann P,McNeil A J.An algorithm for nonparametric GARCH modelling.Computational Statisticsand Data Analysis,2002,40(4):665-683]提出的迭代算法并将其用于可加GARCH模型的估计.通过能够控制真实波动率的数学模拟实验,分别用样本内和样本外估计的方法说明了可加GARCH模型在估计现有参数模型无法刻画的复杂序列波动率时具有更好的估计效果,而与非参数模型相比,可加GARCH模型也有较好的估计效果.通过一个推断波动特征的算例,表明了可加GARCH模型对研究新兴市场股市或者处于金融危机中的股市等存在复杂波动特征的金融市场波动率有着非常现实的意义.展开更多
文摘放宽了传统GARCH模型参数形式的假定,将广义可加模型引入条件方差的估计,改进了[Bhlmann P,McNeil A J.An algorithm for nonparametric GARCH modelling.Computational Statisticsand Data Analysis,2002,40(4):665-683]提出的迭代算法并将其用于可加GARCH模型的估计.通过能够控制真实波动率的数学模拟实验,分别用样本内和样本外估计的方法说明了可加GARCH模型在估计现有参数模型无法刻画的复杂序列波动率时具有更好的估计效果,而与非参数模型相比,可加GARCH模型也有较好的估计效果.通过一个推断波动特征的算例,表明了可加GARCH模型对研究新兴市场股市或者处于金融危机中的股市等存在复杂波动特征的金融市场波动率有着非常现实的意义.