期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于深度可分离卷积神经网络的轴承故障诊断模型 被引量:3
1
作者 金钰森 丁飞 +2 位作者 陈竺 郑雁鹏 黄伟韬 《无线电通信技术》 北大核心 2024年第1期193-202,共10页
在现实工业环境中需要对设备故障做出快速准确的诊断,低时延和高准确度的要求使得传统卷积神经网络(Convolutional Neural Network, CNN)在故障诊断过程中受到严重制约。针对此问题,提出了一种基于深度可分离卷积神经网络(Separable Con... 在现实工业环境中需要对设备故障做出快速准确的诊断,低时延和高准确度的要求使得传统卷积神经网络(Convolutional Neural Network, CNN)在故障诊断过程中受到严重制约。针对此问题,提出了一种基于深度可分离卷积神经网络(Separable Convolutional Neural Network, SCNN)的轴承故障诊断模型,构建能够处理连续振动信号的主干CNN,通过对主干CNN中的卷积层进行可分离处理来构建SCNN,实现卷积过程的通道和区域的分离,减少卷积计算过程中所需的参数,从而降低计算时延;为SCNN引入残差层,通过残差连接来保证卷积迭代计算的准确率,避免网络层数过多而造成过拟合。为了对比所构建模型的有效性,将传统的VGG16和ResNet50网络进行一维重构来进行验证,并对分类处理后的CWRU故障轴承数据进行分析。结果显示该模型在保证识别准确率的同时有效地提高了故障诊断的效率。 展开更多
关键词 故障诊断 滚动轴承 残差神经网络 可分离卷积神经网络
在线阅读 下载PDF
深度可分离卷积神经网络在自动分拣中的应用 被引量:3
2
作者 何静 程涛 +1 位作者 黄良辉 康组超 《包装学报》 2018年第6期33-40,共8页
针对传统的花卉分类算法在工业自动化分拣应用中出现模型参数过大、分拣精度不高的问题,提出一种基于深度学习的花卉识别算法。介绍了花卉分类算法在工业花卉包装分拣系统中的应用;根据实际需求,采用一种深度可分离卷积神经网络提取花... 针对传统的花卉分类算法在工业自动化分拣应用中出现模型参数过大、分拣精度不高的问题,提出一种基于深度学习的花卉识别算法。介绍了花卉分类算法在工业花卉包装分拣系统中的应用;根据实际需求,采用一种深度可分离卷积神经网络提取花卉特征,并详细分析了网络的模型结构;为了提高模型训练速度,提出了一种微调的模型训练方法。实验结果表明,所采用的花卉分类算法在工业花卉自动分拣的应用中相比传统算法,准确率更高、稳定性更好、应用更加广泛。 展开更多
关键词 工业自动化分拣 花卉分类 深度可分离卷积神经网络 网络微调
在线阅读 下载PDF
基于深度可分离卷积神经网络的关键词识别系统 被引量:4
3
作者 王帅 彭意兵 何顶新 《微电子学与计算机》 北大核心 2019年第9期103-108,共6页
关键词识别系统是智能语音交互系统的重要组成部分.本文使用Google语音命令数据集,探索使用传统卷积神经网络和深度可分离卷积神经网络在关键词识别任务中的应用,对两种卷积神经网络模型从识别率、计算量、内存消耗进行对比,并提出适用... 关键词识别系统是智能语音交互系统的重要组成部分.本文使用Google语音命令数据集,探索使用传统卷积神经网络和深度可分离卷积神经网络在关键词识别任务中的应用,对两种卷积神经网络模型从识别率、计算量、内存消耗进行对比,并提出适用于受限设备的低资源、较高识别率的网络模型.实验结果显示无论传统卷积神经网络还是深度可分离卷积神经网络在关键词识别任务中的表现都优于传统的的隐马尔科夫模型和全连接深度学习模型,而深度可分离卷积神经网络进一步优于传统卷积神经网络. 展开更多
关键词 关键词识别 卷积神经网络 深度可分离卷积神经网络 受限设备
在线阅读 下载PDF
基于DSConvBiGRU网络和热电堆阵列的动态手势识别方法
4
作者 顾亮 于莲芝 《计量学报》 CSCD 北大核心 2024年第6期795-805,共11页
提出了适用于嵌入式系统并融合深度可分离卷积神经网络与双向门控循环单元的DSConvBiGRU网络模型,将其用于动态手势序列的分类,设计并实现了一种使用低分辨率热电堆阵列传感器的动态手势识别解决方案,构建了动态手势数据集并在公开网站... 提出了适用于嵌入式系统并融合深度可分离卷积神经网络与双向门控循环单元的DSConvBiGRU网络模型,将其用于动态手势序列的分类,设计并实现了一种使用低分辨率热电堆阵列传感器的动态手势识别解决方案,构建了动态手势数据集并在公开网站发布,完成了预训练网络模型在Raspberry Pi边缘端的部署。系统对传感器输出的连续20个温度矩阵进行区间映射、背景减除、Lanczos插值和Otsu二值化预处理得到单个动态手势序列,再由预训练的DSConvBiGRU网络进行分类。实验结果表明:网络模型在测试集上识别准确率为99.291%,在边缘端预处理耗时5.513 ms,推理耗时8.231 ms,该系统满足低功耗、高精度和实时性的设计需求。 展开更多
关键词 机器视觉 光电检测 动态手势识别 热电堆阵列 深度可分离卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于MobileNet的敏感图像识别系统设计 被引量:6
5
作者 邢艳芳 卓文鑫 段红秀 《电视技术》 2018年第7期53-56,共4页
目前人工智能技术已经渗透到媒体日常生产的全部环节,研究面向内容安全的图像识别技术,对网络中的违法不良图像信息进行识别和监管,具有重要的现实意义。本设计利用深度可分离卷积神经网络和MobileNet模型,配合cuDNN的GPU并行计算架构,... 目前人工智能技术已经渗透到媒体日常生产的全部环节,研究面向内容安全的图像识别技术,对网络中的违法不良图像信息进行识别和监管,具有重要的现实意义。本设计利用深度可分离卷积神经网络和MobileNet模型,配合cuDNN的GPU并行计算架构,对构建的敏感图像数据集进行训练。保存训练完成的模型,对敏感图像实现较高准确度的识别。 展开更多
关键词 MobileNet模型 深度可分离卷积神经网络 GPU加速
在线阅读 下载PDF
一种轻量化低复杂度的FDD大规模MIMO系统CSI反馈方法 被引量:7
6
作者 廖勇 李玉杰 《电子学报》 EI CAS CSCD 北大核心 2022年第5期1211-1217,共7页
针对频分双工大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)通信系统中信道状态信息(Channel State Information,CSI)反馈方法复杂度高、精度低和开销大的问题,本文提出了一种基于深度学习的低复杂度CSI反馈方法.该方法通... 针对频分双工大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)通信系统中信道状态信息(Channel State Information,CSI)反馈方法复杂度高、精度低和开销大的问题,本文提出了一种基于深度学习的低复杂度CSI反馈方法.该方法通过端到端的方式构建了一种从用户设备编码器到基站解码器相结合的网络结构.编解码器利用连续的平均池化层和上采样层完成特征图的降维和升维,同时引入深度可分离卷积神经网络减少网络参数量.在解码器部分,本文利用残差网络构建连续的拥有大卷积核的残差块逼近原始CSI矩阵.仿真结果表明,和已有的代表性方法相比,本文所提方法在归一化均方误差上有2 dB~5 dB的性能提升,在余弦相似度上也有2%~5%的提升,并且在时间复杂度和空间复杂度上均有更好的表现. 展开更多
关键词 频分双工 大规模MIMO 信道状态信息 深度学习 深度可分离卷积神经网络 残差网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部