期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多任务学习的古诗和对联自动生成 被引量:5
1
作者 卫万成 黄文明 +1 位作者 王晶 邓珍荣 《中文信息学报》 CSCD 北大核心 2019年第11期115-124,共10页
实现古诗和对联的自动生成是极具挑战性的任务。该文提出了一种新颖的多任务学习模型用于古诗和对联的自动生成。模型采用编码-解码结构并融入注意力机制,编码部分由两个BiLSTM组成,一个BiLSTM用于关键词输入,另一个BiLSTM用于古诗和对... 实现古诗和对联的自动生成是极具挑战性的任务。该文提出了一种新颖的多任务学习模型用于古诗和对联的自动生成。模型采用编码-解码结构并融入注意力机制,编码部分由两个BiLSTM组成,一个BiLSTM用于关键词输入,另一个BiLSTM用于古诗和对联输入;解码部分由两个LSTM组成,一个LSTM用于古诗的解码输出,另一个LSTM用于对联的解码输出。在中国的传统文学中,古诗和对联具有很多的相似特征,多任务学习模型通过编码器参数共享,解码器参数不共享,让模型底层编码部分兼容古诗和对联特征,解码部分保留各自特征,增强模型泛化能力,表现效果大大优于单任务模型。同时,该文在模型中创新性地引入关键词信息,让生成的古诗及对联表达内容与用户意图一致。最后,该文采用自动评估和人工评估两种方式验证了方法的有效性。 展开更多
关键词 LSTM 多任务学习 注意力机制 古诗对联生成
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部