为了有效检测识别被篡改的古籍文字图像,提出一种可用于古籍文字图像篡改的检测识别模型MDAS-Net。首先在边缘监督分支中提出一种全新的特征融合方式即混合注意力块,以更好地提取图像中的多尺度目标信息;其次,针对边缘监督分支和噪声敏...为了有效检测识别被篡改的古籍文字图像,提出一种可用于古籍文字图像篡改的检测识别模型MDAS-Net。首先在边缘监督分支中提出一种全新的特征融合方式即混合注意力块,以更好地提取图像中的多尺度目标信息;其次,针对边缘监督分支和噪声敏感分支的特征融合设计一种特征传递模块E-2-N/N-2-E Help Block,促进2个分支间的信息交流,以得到更高质量的融合特征。为了验证模型的有效性,创建古籍图像篡改数据集,并联合篡改图像文本数据集(TTI)进行对比实验和消融实验。结果表明,MDAS-Net模型在古籍文字图像篡改区域检测效果良好,受试者工作特性曲线下的面积(AUC)达到了0.852,F_(1)值达到了0.784,并证明了MDAS-Net在检测古籍文字图像篡改方面的实用性。展开更多
文摘为了有效检测识别被篡改的古籍文字图像,提出一种可用于古籍文字图像篡改的检测识别模型MDAS-Net。首先在边缘监督分支中提出一种全新的特征融合方式即混合注意力块,以更好地提取图像中的多尺度目标信息;其次,针对边缘监督分支和噪声敏感分支的特征融合设计一种特征传递模块E-2-N/N-2-E Help Block,促进2个分支间的信息交流,以得到更高质量的融合特征。为了验证模型的有效性,创建古籍图像篡改数据集,并联合篡改图像文本数据集(TTI)进行对比实验和消融实验。结果表明,MDAS-Net模型在古籍文字图像篡改区域检测效果良好,受试者工作特性曲线下的面积(AUC)达到了0.852,F_(1)值达到了0.784,并证明了MDAS-Net在检测古籍文字图像篡改方面的实用性。