期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多模特征深度学习的机器人抓取判别方法 被引量:37
1
作者 仲训杲 徐敏 +1 位作者 仲训昱 彭侠夫 《自动化学报》 EI CSCD 北大核心 2016年第7期1022-1029,共8页
针对智能机器人抓取判别问题,研究多模特征深度学习与融合方法.该方法将测试特征分布偏离训练特征视为一类噪化,引入带稀疏约束的降噪自动编码(Denoising auto-encoding,DAE),实现网络权值学习;并以叠层融合策略,获取初始多模特征的深... 针对智能机器人抓取判别问题,研究多模特征深度学习与融合方法.该方法将测试特征分布偏离训练特征视为一类噪化,引入带稀疏约束的降噪自动编码(Denoising auto-encoding,DAE),实现网络权值学习;并以叠层融合策略,获取初始多模特征的深层抽象表达,两种手段相结合旨在提高深度网络的鲁棒性和抓取判别精确性.实验采用深度摄像机与6自由度工业机器人组建测试平台,对不同类别目标进行在线对比实验.结果表明,设计的多模特征深度学习依据人的抓取习惯,实现最优抓取判别,并且机器人成功实施抓取定位,研究方法对新目标具备良好的抓取判别能力. 展开更多
关键词 机器人抓取判别 降噪自动编码 叠层深度学习 多模特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部