期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
叠加去噪自动编码器结合深度神经网络的心电图信号分类方法
被引量:
9
1
作者
颜菲
胡玉平
《计算机应用与软件》
北大核心
2019年第4期178-185,共8页
针对现有心电图信号分类方法精度较低,模型训练收敛速度较慢的缺点,提出一种基于叠加去噪自动编码器和深度神经网络方法的新型分类方法。该方法采用无监督学习方式,利用带有稀疏约束的叠加去噪自动编码器,实现心电图原始数据的特征学习...
针对现有心电图信号分类方法精度较低,模型训练收敛速度较慢的缺点,提出一种基于叠加去噪自动编码器和深度神经网络方法的新型分类方法。该方法采用无监督学习方式,利用带有稀疏约束的叠加去噪自动编码器,实现心电图原始数据的特征学习。基于深度神经网络对信号进行分类,同时利用监督式自主学习微调方法对神经网络权重进行适时调整,从而保证信号分类的精度和质量。利用三个机构的经典数据库对该方法进行实验研究,并与目前两种最新的方法进行对比。实验结果证明,该方法在专家标记样本较少的情况下,仍能明显提高心电图数据分类的准确率,同时加快训练时的收敛速度。
展开更多
关键词
心电图
信号分类
深度神经网络
叠加去噪自动编码器
权重
自动
调节
在线阅读
下载PDF
职称材料
题名
叠加去噪自动编码器结合深度神经网络的心电图信号分类方法
被引量:
9
1
作者
颜菲
胡玉平
机构
柳州铁道职业技术学院信息技术学院
广东财经大学信息学院
出处
《计算机应用与软件》
北大核心
2019年第4期178-185,共8页
基金
广东省自然科学基金项目(2016A030313717)
文摘
针对现有心电图信号分类方法精度较低,模型训练收敛速度较慢的缺点,提出一种基于叠加去噪自动编码器和深度神经网络方法的新型分类方法。该方法采用无监督学习方式,利用带有稀疏约束的叠加去噪自动编码器,实现心电图原始数据的特征学习。基于深度神经网络对信号进行分类,同时利用监督式自主学习微调方法对神经网络权重进行适时调整,从而保证信号分类的精度和质量。利用三个机构的经典数据库对该方法进行实验研究,并与目前两种最新的方法进行对比。实验结果证明,该方法在专家标记样本较少的情况下,仍能明显提高心电图数据分类的准确率,同时加快训练时的收敛速度。
关键词
心电图
信号分类
深度神经网络
叠加去噪自动编码器
权重
自动
调节
Keywords
Electrocardiogram
Signal classification
Deep neural network
Stacked denoising autoencoder
Weight self-regulation
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
叠加去噪自动编码器结合深度神经网络的心电图信号分类方法
颜菲
胡玉平
《计算机应用与软件》
北大核心
2019
9
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部