期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进Faster R-CNN的变电站设备外部缺陷检测 被引量:7
1
作者 张铭泉 邢福德 刘冬 《智能系统学报》 CSCD 北大核心 2024年第2期290-298,共9页
针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-C... 针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-CNN(faster region-based convolutional network)算法,但其对小目标物体和设备渗漏油的检测精度仍有提升空间,为此设计一种基于Faster R-CNN的改进算法。改进算法通过对输入图像进行数据增强,在网络中添加SPP(spatial pyramid pooling)结构以及改进特征融合方式,对分类以及边界框回归损失函数进行改进的方式来提高缺陷的检测精度。与原Faster R-CNN算法进行对比,改进算法在变电站设备缺陷目标检测数据集的检测结果中AP(average precision)(0.5∶0.95)提高了2.7个百分点,AP(0.5)提高了4.3个百分点,对小目标物体的检测精度也提高了1.8个百分点,试验结果验证了该方法的有效性。 展开更多
关键词 变电站设备外部缺陷 深度学习 目标检测 卷积神经网络 Faster R-CNN 特征提取 特征融合金字塔结构 损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部