研究了自适应最小均方误差(least mean squares,LMS)滤波算法的步长选取问题。在详细分析现有变步长LMS算法的基础上,给出一种以双曲正切函数的改进形式为变步长的LMS算法。讨论了步长参数的选取原则及其对算法收敛性、抗干扰性和稳态...研究了自适应最小均方误差(least mean squares,LMS)滤波算法的步长选取问题。在详细分析现有变步长LMS算法的基础上,给出一种以双曲正切函数的改进形式为变步长的LMS算法。讨论了步长参数的选取原则及其对算法收敛性、抗干扰性和稳态误差的影响。该算法不但具有较快的收敛速度和跟踪速度,而且能获得更小的稳态失调。理论分析和仿真结果表明,该算法具有更好的稳态性能。展开更多
提出一种改进的变步长LMS(Least Mean Square)算法,该算法在步长参数μ与误差信号e(n)之间建立了一种非线性函数关系,并且分析了参数α,β的取值原则及对算法收敛性能的影响。该关系具有在误差e(n)接近零处缓慢变化的优点,克服了s函数...提出一种改进的变步长LMS(Least Mean Square)算法,该算法在步长参数μ与误差信号e(n)之间建立了一种非线性函数关系,并且分析了参数α,β的取值原则及对算法收敛性能的影响。该关系具有在误差e(n)接近零处缓慢变化的优点,克服了s函数变步长LMS算法在自适应稳态阶段μ(n)取值偏大的缺陷。理论分析和计算机仿真结果表明,改进算法的收敛速度和稳态误差的性能指标都有较大的提高。展开更多
文摘研究了自适应最小均方误差(least mean squares,LMS)滤波算法的步长选取问题。在详细分析现有变步长LMS算法的基础上,给出一种以双曲正切函数的改进形式为变步长的LMS算法。讨论了步长参数的选取原则及其对算法收敛性、抗干扰性和稳态误差的影响。该算法不但具有较快的收敛速度和跟踪速度,而且能获得更小的稳态失调。理论分析和仿真结果表明,该算法具有更好的稳态性能。
文摘提出一种改进的变步长LMS(Least Mean Square)算法,该算法在步长参数μ与误差信号e(n)之间建立了一种非线性函数关系,并且分析了参数α,β的取值原则及对算法收敛性能的影响。该关系具有在误差e(n)接近零处缓慢变化的优点,克服了s函数变步长LMS算法在自适应稳态阶段μ(n)取值偏大的缺陷。理论分析和计算机仿真结果表明,改进算法的收敛速度和稳态误差的性能指标都有较大的提高。