设计一种便携式心电监测装置,其具有低功耗、应用场景宽等优点,能够在运动状态下实时监测人体心电信号(electrocardiogram,ECG)。为了滤除心电信号中的噪声干扰,尤其是运动伪迹(motion artifact,MA)的噪声干扰,在最小均方(least mean sq...设计一种便携式心电监测装置,其具有低功耗、应用场景宽等优点,能够在运动状态下实时监测人体心电信号(electrocardiogram,ECG)。为了滤除心电信号中的噪声干扰,尤其是运动伪迹(motion artifact,MA)的噪声干扰,在最小均方(least mean squares,LMS)算法的基础上改进步长因子,加快自适应算法的收敛速度,从而保证在最佳权系数附近的失调量最小,且减少权值系数更新的运算量。实验结果表明,算法在处理信号过程中能够得到清晰不失真的原始心电信号,具有运算量小且滤波效果较好等优点。展开更多
为进一步减小收敛速率与稳态误差之间的矛盾,改善自适应滤波算法,利用改进的Lorentzian函数提出了一种新的变步长凸组合最小均方(new variable step-size convex-combination of least mean square,NVSCLMS)算法,该算法既有效提高了收...为进一步减小收敛速率与稳态误差之间的矛盾,改善自适应滤波算法,利用改进的Lorentzian函数提出了一种新的变步长凸组合最小均方(new variable step-size convex-combination of least mean square,NVSCLMS)算法,该算法既有效提高了收敛速率又具备很好的抗干扰能力。同时,为了克服CLMS算法停滞等待的弊端,采用了瞬时转移结构;另外,在参数的迭代公式中使用sign函数进行优化以降低运算量。仿真结果证明该算法与CLMS、VS-CLMS相比,在不同的仿真环境中均能表现出良好的均方特性和跟踪特性。展开更多
随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time l...随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time linear equalizer,CTLE),该均衡器采用2级级联结构来补偿信道衰减,并提高接收信号的质量。此外,自适应模块通过采用符号-符号最小均方误差(sign-sign least mean square,SS-LMS)算法,使抽头系数加快了收敛速度。仿真结果表明,当传输速率为16 Gbit/s时,均衡器可以补偿-15.53 dB的半波特率通道衰减,均衡器系数在16×10^(4)个单元间隔数据内收敛,并且收敛之后接收误码率低于10^(-12)。展开更多
在水声通信中,信道的多径效应会造成严重的码间串扰(ISI),而现有的均衡算法在处理ISI问题时存在收敛速度慢、稳态误差大、算法复杂不易于硬件移植等问题,为此结合判决反馈均衡器结构前向均衡(FFE)与判决均衡结构(DFE),提出了一种基于反...在水声通信中,信道的多径效应会造成严重的码间串扰(ISI),而现有的均衡算法在处理ISI问题时存在收敛速度慢、稳态误差大、算法复杂不易于硬件移植等问题,为此结合判决反馈均衡器结构前向均衡(FFE)与判决均衡结构(DFE),提出了一种基于反余弦步长函数和三参数调整因子的变步长最小均方(LMS)算法。首先对三参数因子α、β、r进行算法仿真,优化算法性能,与固定步长LMS算法、基于修正反正切的变步长LMS算法以及基于双曲正割函数的变步长LMS算法的收敛性能和稳态误差进行仿真比较,结果显示:所提算法的收敛速度较固定步长LMS算法提高了57.9%,稳态误差下降5 d B;较双曲正割LMS算法和修正反正切LMS算法提高了26.3%和15.8%,并且算法的稳态误差下降了1~2 d B。最后,将算法移植于信号处理模块,进行水下实验,结果表明,水声信道造成的ISI经过均衡器后,信号得以恢复,能够实际克服多径效应造成的水声信道ISI问题。展开更多
提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个...提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个自适应混合能量参数λk,改善算法收敛速度和鲁棒性。首先通过仿真分析变步长算法中的3个固定参数α,β,μ的取值范围及对算法收敛性能的影响;并在两种典型的水声信道环境下,采用两种调制信号对算法的收敛性能进行计算机仿真,结果显示,新算法的收敛速度明显快于XENLMS算法和已有的变步长算法,收敛性能接近递归最小二乘(recursive least square,RLS)算法的最优性能,但计算复杂度远小于RLS算法。最后,木兰湖试验验证了带判决反馈均衡器(decision feedback equalization,DFE)结构的新算法具有较好的克服多径效应和多普勒频移补偿的能力,相比LMS-DFE提高了一个数量级。展开更多
文摘设计一种便携式心电监测装置,其具有低功耗、应用场景宽等优点,能够在运动状态下实时监测人体心电信号(electrocardiogram,ECG)。为了滤除心电信号中的噪声干扰,尤其是运动伪迹(motion artifact,MA)的噪声干扰,在最小均方(least mean squares,LMS)算法的基础上改进步长因子,加快自适应算法的收敛速度,从而保证在最佳权系数附近的失调量最小,且减少权值系数更新的运算量。实验结果表明,算法在处理信号过程中能够得到清晰不失真的原始心电信号,具有运算量小且滤波效果较好等优点。
文摘为进一步减小收敛速率与稳态误差之间的矛盾,改善自适应滤波算法,利用改进的Lorentzian函数提出了一种新的变步长凸组合最小均方(new variable step-size convex-combination of least mean square,NVSCLMS)算法,该算法既有效提高了收敛速率又具备很好的抗干扰能力。同时,为了克服CLMS算法停滞等待的弊端,采用了瞬时转移结构;另外,在参数的迭代公式中使用sign函数进行优化以降低运算量。仿真结果证明该算法与CLMS、VS-CLMS相比,在不同的仿真环境中均能表现出良好的均方特性和跟踪特性。
文摘随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time linear equalizer,CTLE),该均衡器采用2级级联结构来补偿信道衰减,并提高接收信号的质量。此外,自适应模块通过采用符号-符号最小均方误差(sign-sign least mean square,SS-LMS)算法,使抽头系数加快了收敛速度。仿真结果表明,当传输速率为16 Gbit/s时,均衡器可以补偿-15.53 dB的半波特率通道衰减,均衡器系数在16×10^(4)个单元间隔数据内收敛,并且收敛之后接收误码率低于10^(-12)。
文摘在水声通信中,信道的多径效应会造成严重的码间串扰(ISI),而现有的均衡算法在处理ISI问题时存在收敛速度慢、稳态误差大、算法复杂不易于硬件移植等问题,为此结合判决反馈均衡器结构前向均衡(FFE)与判决均衡结构(DFE),提出了一种基于反余弦步长函数和三参数调整因子的变步长最小均方(LMS)算法。首先对三参数因子α、β、r进行算法仿真,优化算法性能,与固定步长LMS算法、基于修正反正切的变步长LMS算法以及基于双曲正割函数的变步长LMS算法的收敛性能和稳态误差进行仿真比较,结果显示:所提算法的收敛速度较固定步长LMS算法提高了57.9%,稳态误差下降5 d B;较双曲正割LMS算法和修正反正切LMS算法提高了26.3%和15.8%,并且算法的稳态误差下降了1~2 d B。最后,将算法移植于信号处理模块,进行水下实验,结果表明,水声信道造成的ISI经过均衡器后,信号得以恢复,能够实际克服多径效应造成的水声信道ISI问题。
文摘提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个自适应混合能量参数λk,改善算法收敛速度和鲁棒性。首先通过仿真分析变步长算法中的3个固定参数α,β,μ的取值范围及对算法收敛性能的影响;并在两种典型的水声信道环境下,采用两种调制信号对算法的收敛性能进行计算机仿真,结果显示,新算法的收敛速度明显快于XENLMS算法和已有的变步长算法,收敛性能接近递归最小二乘(recursive least square,RLS)算法的最优性能,但计算复杂度远小于RLS算法。最后,木兰湖试验验证了带判决反馈均衡器(decision feedback equalization,DFE)结构的新算法具有较好的克服多径效应和多普勒频移补偿的能力,相比LMS-DFE提高了一个数量级。