期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于双向编码表示转换的双模态软件分类模型
1
作者 付晓峰 陈威岐 +1 位作者 孙曜 潘宇泽 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第11期2239-2246,共8页
针对已有方法在软件分类方面只考虑单一分类因素和精确率较低的不足,提出基于双向编码表示转换(BERT)的双模态软件分类方法.该方法遵循最新的国家标准对软件进行分类,通过集成基于代码的BERT(CodeBERT)和基于掩码语言模型的纠错BERT(Mac... 针对已有方法在软件分类方面只考虑单一分类因素和精确率较低的不足,提出基于双向编码表示转换(BERT)的双模态软件分类方法.该方法遵循最新的国家标准对软件进行分类,通过集成基于代码的BERT(CodeBERT)和基于掩码语言模型的纠错BERT(MacBERT)双向编码的优势,其中CodeBERT用于深入分析源码内容,MacBERT处理文本描述信息如注释和文档,利用这2种双模态信息联合生成词嵌入.结合卷积神经网络(CNN)提取局部特征,通过提出的交叉自注意力机制(CSAM)融合模型结果,实现对复杂软件系统的准确分类.实验结果表明,本文方法在同时考虑文本和源码数据的情况下精确率高达93.3%,与从奥集能和gitee平台收集并处理的数据集上训练的BERT模型和CodeBERT模型相比,平均精确率提高了5.4%.这表明了双向编码和双模态分类方法在软件分类中的高效性和准确性,证明了提出方法的实用性. 展开更多
关键词 软件分类 双向编码表示转换(BERT) 卷积神经网络 双模态 交叉自注意力机制
在线阅读 下载PDF
带有增强和变换因子的三层结构双向联想记忆神经网络 被引量:1
2
作者 黄文龙 张殿治 雷洪利 《系统工程与电子技术》 EI CSCD 北大核心 2004年第2期264-267,共4页
提出了一种带有增强和变换因子的三层结构的双向联想记忆神经网络。介绍了增强和变换因子的巧妙选取方法,此方法可使网络很好地适用于相关度很高的样本。但是网络容量的增加往往伴随着寄生稳态点的增加,为避免这种情况,在网络中引入三... 提出了一种带有增强和变换因子的三层结构的双向联想记忆神经网络。介绍了增强和变换因子的巧妙选取方法,此方法可使网络很好地适用于相关度很高的样本。但是网络容量的增加往往伴随着寄生稳态点的增加,为避免这种情况,在网络中引入三层结构,这种新的双向联想记忆神经网络能够确保任意相关的样本达到完美的双向联想记忆。仿真实验证明了该方法的优越性。 展开更多
关键词 双向联想记忆神经网络 三层结构 增强因子 变换因子 训练样本
在线阅读 下载PDF
采用小波变换和双向长短期记忆网络的脑电睡眠分期模型 被引量:9
3
作者 王天宇 陈晗 +1 位作者 王刚 吴宁 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第9期104-111,共8页
针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作... 针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作为单个睡眠片段的分期依据,再使用双向长短期记忆网络进一步提取睡眠片段之间的状态转换规则;最后利用深度学习方法建立特征、规则与睡眠阶段的映射,使用数据扩充和两步训练法训练模型,削弱数据不均衡的影响,完成连续片段的睡眠分期。采用SHHS公开数据库的5793名被试者的睡眠脑电数据对该模型进行验证,实验结果表明,睡眠分期准确率达到85.82%,整体F1达到78.39,Kappa系数达到0.799,和现有方法相比性能明显提升。 展开更多
关键词 睡眠分期 脑电信号 连续小波变换 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
针对非平稳信号和高频噪声的自适应噪声完整集成经验模态分解-双向长短期记忆风功率预测模型
4
作者 万思洋 杨苹 +3 位作者 崔嘉雁 李丰能 隗知初 陈文皓 《电网技术》 北大核心 2025年第3期1176-1184,I0085,共10页
提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高... 提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高风电功率预测的准确性和鲁棒性。当前风电功率预测面临非平稳信号和高频噪声的问题,影响了预测的准确性。针对这一问题,通过CEEMDAN分解,将复杂的非平稳信号分解为多个固有模态函数分量(intrinsic mode function,IMF),在此基础上创新性地通过平均波动幅度(average fluctuation range,AFR)计算IMF的平均波动幅度进行高低频划分,应用经验小波变换(empirical wavelet transform,EWT)对高频分量进行滤波,显著降低信号中的高频噪声,提高数据准确性。随后,分别对高频和低频分量建立Bi-LSTM模型,选取最优参数进行训练和预测,将各分量的预测结果叠加得到最终的风电功率预测值。模型经过不同季节和数据集的验证,展示了其在风电功率预测中的通用性和鲁棒性。研究证明,结合CEEMDAN分解、AFR划分和EWT滤波,通过有效的噪声抑制和数据分解,能够显著提升风电功率预测的准确性和稳定性,弥补了传统方法在处理非平稳信号和高频噪声方面的不足。 展开更多
关键词 风电功率预测 双向长短期记忆神经网络 完全集成经验模态分解 经验小波变换 深度学习
在线阅读 下载PDF
三端口双向直流变换器断路故障综合诊断方法
5
作者 陈周牛 谷伟平 《电源学报》 CSCD 北大核心 2022年第5期125-134,共10页
三端口双向直流变换器是现代微电子技术中的新型核心装置,其故障的快速综合诊断可促进电子技术的发展。通过建立SHEV电气系统的三端口双向直流变换器的仿真拓扑模型,考虑功率器件的位置条件,以直流侧母线输出电流作为特征量,细致划分每... 三端口双向直流变换器是现代微电子技术中的新型核心装置,其故障的快速综合诊断可促进电子技术的发展。通过建立SHEV电气系统的三端口双向直流变换器的仿真拓扑模型,考虑功率器件的位置条件,以直流侧母线输出电流作为特征量,细致划分每种故障类别,并分析不同故障下输出电流的特性,通过快速傅里叶变换FFT(fast Fourier transform)分解信号获取各个频率段,以20 kHz频率段直流侧电流信号能量作为故障诊断的特点量,结合遗传算法BP神经网络,综合实现故障类别的区分与诊断。实验结果表明,此方法在诊断与区分交直流变换器的断路故障时,诊断最小误差仅为0.033,诊断结果精(准);且可在一个开关周期内实现开关管断路故障诊断,具有较高准确率及效率。 展开更多
关键词 三端口 双向 直流变换 断路故障 拓扑模型 神经网络
在线阅读 下载PDF
南美白对虾养殖领域中文命名实体识别数据集构建
6
作者 彭小红 邓峰 余应淮 《计算机工程与应用》 北大核心 2025年第9期353-362,共10页
该研究致力于构建一个高质量的数据集,用于南美白对虾养殖领域的命名实体识别(named entity recognition,NER)任务,命名为VamNER。为确保数据集的多样性,从CNKI数据库中收集了近10年的高质量论文,并结合权威书籍进行语料构建。邀请专家... 该研究致力于构建一个高质量的数据集,用于南美白对虾养殖领域的命名实体识别(named entity recognition,NER)任务,命名为VamNER。为确保数据集的多样性,从CNKI数据库中收集了近10年的高质量论文,并结合权威书籍进行语料构建。邀请专家讨论实体类型,并经过专业培训的标注人员使用IOB2标注格式进行标注,标注过程分为预标注和正式标注两个阶段以提高效率。在预标注阶段,标注者间一致性(inter-annotation agreement,IAA)达到0.87,表明标注人员的一致性较高。最终,VamNER包含6115个句子,总字符数达384602,涵盖10个实体类型,共有12814个实体。研究通过与多个通用领域数据集和一个特定领域数据集进行比较,揭示了VamNER的独特特性。在实验中使用了预训练的基于变换器的双向编码器表示(bidirectional encoder representations from Transformers,BERT)模型、双向长短期记忆神经网络(bidirectional long short-term memory network,BiLSTM)和条件随机场模型(conditional random fields,CRF),最优模型在测试集上的F1值达到82.8%。VamNER成为首个专注于南美白对虾养殖领域的NER数据集,为中文特定领域NER研究提供了丰富资源,有望推动水产养殖领域NER研究的发展。 展开更多
关键词 命名实体识别 VamNER数据集 标注者间一致性(IAA) 基于变换的双向编码表示(BERT) 双向长短期记忆神经网络(BiLSTM) 条件随机场(CRF)
在线阅读 下载PDF
基于小波变换与BiGRU-NN模型的短期负荷预测方法 被引量:12
7
作者 曾囿钧 肖先勇 徐方维 《电测与仪表》 北大核心 2023年第6期103-109,共7页
为更好地挖掘大量采集数据蕴含的有效信息,提高短期负荷预测精度,文中提出一种基于小波变换与双向门控循环单元(BiGRU)、全连接神经网络(NN)混合模型的短期负荷预测方法。文章利用小波变换将负荷特征数据分解为高频数据以及低频数据,再... 为更好地挖掘大量采集数据蕴含的有效信息,提高短期负荷预测精度,文中提出一种基于小波变换与双向门控循环单元(BiGRU)、全连接神经网络(NN)混合模型的短期负荷预测方法。文章利用小波变换将负荷特征数据分解为高频数据以及低频数据,再分别建立高频混合神经网络以及低频混合神经网络模型进行预测。在混合神经网络模型中,将负荷特征数据作为BiGRU-NN网络的输入,利用BiGRU-NN网络学习负荷非线性以及时序性特征,以此进行短期负荷预测。文中以丹麦东部地区的负荷数据作为算例,实验结果表明,该方法与GRU神经网络、DNN神经网络、CNN-LSTM神经网络相比,具有更高的预测精度。 展开更多
关键词 电力系统 短期负荷预测 小波变换 双向门控循环单元 双向门控循环单元-全连接神经网络混合模型
在线阅读 下载PDF
基于小波变换和混合深度学习的短期光伏功率预测 被引量:9
8
作者 刘甚臻 马超 《可再生能源》 CAS CSCD 北大核心 2023年第6期744-749,共6页
准确的短期光伏功率预测对于保证电能质量及提高电力系统运行可靠性具有重要意义。为此,文章提出了一种基于小波变换和混合深度学习的短期光伏功率预测方法。首先,将天气类型分为理想天气(晴天)和非理想天气(多云、阴天等)。对于理想天... 准确的短期光伏功率预测对于保证电能质量及提高电力系统运行可靠性具有重要意义。为此,文章提出了一种基于小波变换和混合深度学习的短期光伏功率预测方法。首先,将天气类型分为理想天气(晴天)和非理想天气(多云、阴天等)。对于理想天气,将历史光伏功率时间序列转化为二维图像作为混合深度学习模型(Hybrid Deep Learning Model,HDLM)的输入。对于非理想天气,使用小波变换对历史光伏功率时间序列进行分解,将得到的分量和气象参数转化成三维图像作为HDLM的输入。在HDLM中引入并行结构,由多个并列卷积神经网络和双向长短期记忆网络组成。实验结果表明,在理想天气和非理想天气条件下,所提短期光伏功率预测方法均具有较高的预测精度。 展开更多
关键词 光伏功率预测 混合深度学习 小波变换 卷积神经网络 双向长短期记忆网络 并行结构
在线阅读 下载PDF
基于WT-CNN-BiLSTM模型的日前光伏功率预测 被引量:9
9
作者 杨建 常学军 +2 位作者 姚帅 裴震宇 顾波 《南方电网技术》 CSCD 北大核心 2024年第8期61-69,79,共10页
光伏功率的准确预测对于电网的安全稳定和经济运行具有重大意义。为此,提出了一种日前光伏功率预测方法,利用小波变换(wavelet transform,WT)将数值天气预报数据(numerical weather prediction,NWP)和光伏功率数据分解为具有时间信息的... 光伏功率的准确预测对于电网的安全稳定和经济运行具有重大意义。为此,提出了一种日前光伏功率预测方法,利用小波变换(wavelet transform,WT)将数值天气预报数据(numerical weather prediction,NWP)和光伏功率数据分解为具有时间信息的频率数据,消除数据信息中随机性和波动性对预测精度的影响,利用卷积神经网络(convolutional neural network,CNN)模型深度挖掘输入数据的季节性特征和空间关联特性,利用双向长短期记忆网络(bi-directional long-short term memory,BiLSTM)模型获取输入数据序列的时间相关性,构建基于WT-CNN-BiLSTM的日前光伏功率预测模型。以某一光伏电站为计算对象,在不同季节和气候条件下对比分析WT-CNN-BiLSTM模型、CNN-BiLSTM模型、LSTM(long-short term memory)模型、GRU(gated recurrent unit)模型以及PSO-BP(particle swarm optimization-back propagation)模型的预测结果,计算结果表明WT-CNN-BiLSTM模型的预测精度高于其他模型的预测精度。 展开更多
关键词 光伏功率预测 小波变换 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
基于BERT的多模型融合的Web攻击检测方法 被引量:1
10
作者 袁平宇 邱林 《计算机工程》 CAS CSCD 北大核心 2024年第11期197-206,共10页
传统Web攻击检测方法准确率不高,不能有效防范Web攻击。针对该问题,提出一种基于变换器的双向编码器表示(BERT)的预训练模型、文本卷积神经网络(TextCNN)和双向长短期记忆网络(BiLSTM)多模型融合的Web攻击检测方法。先将HTTP请求进行预... 传统Web攻击检测方法准确率不高,不能有效防范Web攻击。针对该问题,提出一种基于变换器的双向编码器表示(BERT)的预训练模型、文本卷积神经网络(TextCNN)和双向长短期记忆网络(BiLSTM)多模型融合的Web攻击检测方法。先将HTTP请求进行预处理,再通过BERT进行训练得到具备上下文依赖的特征向量,并用TextCNN模型进一步提取其中的高阶语义特征,作为BiLSTM的输入,最后利用Softmax函数进行分类检测。在HTTP CSIC 2010和恶意URL检测两个数据集上对所提方法进行验证,结果表明,与支持向量机(SVM)、逻辑回归(LR)等传统的机器学习方法和现有较新的方法相比,基于BERT的多模型融合的Web攻击检测方法在准确率、精确率、召回率和F1值指标上均表现更优(准确率和F1值的最优值都在99%以上),能准确检测Web攻击。 展开更多
关键词 Web攻击检测 基于变换的双向编码表示 多模型融合 HTTP请求 文本卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
基于注意力机制的双BERT有向情感文本分类研究 被引量:11
11
作者 张铭泉 周辉 曹锦纲 《智能系统学报》 CSCD 北大核心 2022年第6期1220-1227,共8页
在计算社会科学中,理解政治新闻文本中不同政治实体间的情感关系是文本分类领域一项新的研究内容。传统的情感分析方法没有考虑实体之间情感表达的方向,不适用于政治新闻文本领域。针对这一问题,本文提出了一种基于注意力机制的双变换... 在计算社会科学中,理解政治新闻文本中不同政治实体间的情感关系是文本分类领域一项新的研究内容。传统的情感分析方法没有考虑实体之间情感表达的方向,不适用于政治新闻文本领域。针对这一问题,本文提出了一种基于注意力机制的双变换神经网络的双向编码表示(bi-directional encoder representations from transformers, BERT)有向情感文本分类模型。该模型由输入模块、情感分析模块、政治实体方向模块和分类模块四部分组成。情感分析模块和政治实体方向模块具有相同结构,都先采用BERT预训练模型对输入信息进行词嵌入,再采用三层神经网络分别提取实体之间的情感信息和情感方向信息,最后使用注意力机制将两种信息融合,实现对政治新闻文本的分类。在相关数据集上进行实验,结果表明该模型优于现有模型。 展开更多
关键词 情感分析 变换神经网络的双向编码表示 预训练模型 注意力机制 深度学习 机器学习 文本分类 神经网络
在线阅读 下载PDF
基于3DC-BGRU的脑电情感识别 被引量:3
12
作者 胡章芳 刘鹏飞 +2 位作者 蒋勤 罗飞 王明丽 《计算机工程与应用》 CSCD 北大核心 2020年第20期111-117,共7页
针对脑电信号情感识别率偏低的问题,提出了一种基于3DC-BGRU的脑电情感识别方法。对单通道脑电信号进行短时傅里叶变换(STFT),提取相关频带的时频信息构成二维时频图,并将多个通道的时频图构成一种全新的时间、频率和通道的三维数据形式... 针对脑电信号情感识别率偏低的问题,提出了一种基于3DC-BGRU的脑电情感识别方法。对单通道脑电信号进行短时傅里叶变换(STFT),提取相关频带的时频信息构成二维时频图,并将多个通道的时频图构成一种全新的时间、频率和通道的三维数据形式,通过三维卷积的方式设计了一种新颖的卷积神经网络(CNN)模型对三维数据进行深层特征提取,设计双向门控循环单元(BGRU)对深层特征的序列信息进行处理并配合Softmax进行分类。实验结果表明该方法分类识别率得到提高。 展开更多
关键词 情感识别 短时傅里叶变换(STFT) 三维数据 卷积神经网络(CNN) 双向门控循环单元(BGRU)
在线阅读 下载PDF
基于改进型模糊PID控制器锂电池均衡系统研究 被引量:6
13
作者 王伯瑞 刘晶 郑培 《电源技术》 CAS 北大核心 2021年第5期635-640,共6页
锂离子电池组的不一致性导致电池组增加过充电或过放电风险,并造成个别电池易老化,在工作中易老化电池过充电或过放电使其可用容量和寿命下降,且过充电产生的热量会造成温度快速上升,易引发热失控,增加电池组安全隐患。因此,需要引入均... 锂离子电池组的不一致性导致电池组增加过充电或过放电风险,并造成个别电池易老化,在工作中易老化电池过充电或过放电使其可用容量和寿命下降,且过充电产生的热量会造成温度快速上升,易引发热失控,增加电池组安全隐患。因此,需要引入均衡技术以减轻电池组的不一致性。基于此提出以开关阵列为核心的改进型双向DC/DC变换器均衡电路,以荷电状态(SOC)极值为均衡开启条件,并设计基于蚁群算法(ACO)-Elman动态神经网络的模糊PID控制系统,以粒子群算法(PSO)对量化因子寻优处理。经MATLAB/Simulink仿真,开关阵列使DC/DC变换器均衡能量传递路径缩短,避免能量的无效流动,通过各算法间的优化处理,实现PID特征参数随控制参量变化实时可调,即控制占空比使能量传递处于最优状态,充分发挥电感的储能作用,与其他均衡方案相比,均衡速度快,且效率高。 展开更多
关键词 锂离子电池组 开关阵列 双向DC/DC变换 蚁群算法 动态神经网络 粒子群算法
在线阅读 下载PDF
基于BBCAL模型的法条自动推送方法 被引量:5
14
作者 张青 王肖霞 +1 位作者 孙豫峰 杨风暴 《计算机工程与设计》 北大核心 2022年第3期827-834,共8页
针对公益诉讼案件内容复杂难以理解,专业术语特征难以有效提取等问题,提出一种面向公益诉讼案件的法条自动推送模型。使用BERT模型获取案件词向量,引入BiLSTM模型挖掘词向量更深层次的含义,解决长期依赖问题,设计CNN不同的卷积核尺寸提... 针对公益诉讼案件内容复杂难以理解,专业术语特征难以有效提取等问题,提出一种面向公益诉讼案件的法条自动推送模型。使用BERT模型获取案件词向量,引入BiLSTM模型挖掘词向量更深层次的含义,解决长期依赖问题,设计CNN不同的卷积核尺寸提取不同粒度的专业术语特征信息,引入注意力机制,获取与当前任务最相关的特征。实验结果表明,在公益诉讼案件数据上,该方法的法条自动推送F1值为89.04%,相比传统的方法效果均有提高,验证了其可行性。 展开更多
关键词 公益诉讼案件 法条自动推送 基于变换的双向编码器表征技术 卷积神经网络 注意力机制
在线阅读 下载PDF
基于S-CBiGRU的风电机组滚动轴承故障诊断方法 被引量:4
15
作者 史宗辉 陈长征 +2 位作者 田淼 安文杰 孙鲜明 《机电工程》 CAS 北大核心 2023年第2期232-238,共7页
风电机组滚动轴承的振动信号存在非线性、非平稳的特性,且其特征不易被提取,针对这一问题,提出了一种基于S变换、卷积神经网络、双向门控循环单元的滚动轴承故障诊断方法(即基于S-CBiGRU的诊断方法)。首先,利用S变换对风场采集的振动信... 风电机组滚动轴承的振动信号存在非线性、非平稳的特性,且其特征不易被提取,针对这一问题,提出了一种基于S变换、卷积神经网络、双向门控循环单元的滚动轴承故障诊断方法(即基于S-CBiGRU的诊断方法)。首先,利用S变换对风场采集的振动信号进行了多分辨率时频分析,将一维振动信号转化为包含时间与空间特征信息的二维时频图像;然后,将经S变化所得到的时频图输入到CBiGRU网络模型中,采用CNN卷积池化层提取了振动信号的空间特征;其次,采用BiGRU结构提取了振动信号中的时间序列特征;最后,为了对上述诊断方法的有效性进行验证,采集了风电机组轴承实验数据,并将其输入到该模型中进行诊断实验。实验结果表明:在风电机组轴承故障诊断中,采用S-CBiGRU方法准确率达到93.17%,分类效果优于其他深度学习算法。研究结果表明:S-CBiGRU故障诊断方法具有可行性,可以为风电机组滚动轴承的故障诊断提供一种新途径。 展开更多
关键词 时频分析 空间特征 时间序列特征 S变换 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
融合多种类型语法信息的属性级情感分析模型 被引量:3
16
作者 肖泽管 陈清亮 《计算机科学与探索》 CSCD 北大核心 2022年第2期395-402,共8页
属性级情感分析(ABSA)的目标是识别出句子中属性的情感倾向。现有的方法大多使用注意力机制隐性地建模属性与上下文中情感表达的关系,而忽略了使用语法信息。一方面,属性的情感倾向与句子中的情感表达有紧密的联系,利用句子的句法结构... 属性级情感分析(ABSA)的目标是识别出句子中属性的情感倾向。现有的方法大多使用注意力机制隐性地建模属性与上下文中情感表达的关系,而忽略了使用语法信息。一方面,属性的情感倾向与句子中的情感表达有紧密的联系,利用句子的句法结构可以更直接地对两者建模;另一方面,由于现有的基准数据集较小,模型无法充分学习通用语法知识,这使得它们难以处理复杂的句型和情感表达。针对以上问题,提出一种利用多种类型语法信息的神经网络模型。该模型采用基于依存句法树的图卷积神经网络(GCN),并利用句法结构信息直接匹配属性与其对应情感表达,缓解冗余信息对分类的干扰。同时,使用预训练模型BERT具有多种类型的语法信息的中间层表示作为指导信息,给予模型更多的语法知识。每一层GCN的输入结合上一层GCN的输出和BERT中间层指导信息。最后将属性在最后一层GCN的表示作为特征进行情感倾向分类。通过在SemEval 2014 Task4 Restaurant、Laptop和Twitter数据集上的实验结果表明,提出模型的分类效果超越了很多基准模型。 展开更多
关键词 属性级 情感分析 基于变换的双向编码表示技术(BERT) 依存句法树 图卷积神经网络(GCN)
在线阅读 下载PDF
基于BERT-CNN的Webshell流量检测系统设计与实现 被引量:7
17
作者 江魁 余志航 +1 位作者 陈小雷 李宇豪 《计算机应用》 CSCD 北大核心 2023年第S01期126-132,共7页
Webshell是一种网站后门程序,常被黑客用于入侵服务器后对服务器进行控制,给网站带来严重的安全隐患。针对以往基于流量的机器学习检测Webshell方法存在特征选择不全、向量化不准确、模型设计不合理导致的检测效果不佳问题,设计并实现... Webshell是一种网站后门程序,常被黑客用于入侵服务器后对服务器进行控制,给网站带来严重的安全隐患。针对以往基于流量的机器学习检测Webshell方法存在特征选择不全、向量化不准确、模型设计不合理导致的检测效果不佳问题,设计并实现了一种将基于变换器的双向编码器表示技术(BERT)与卷积神经网络(CNN)相结合的Webshell流量检测系统,通过分析超文本传输协议(HTTP)报文中各个字段信息,提取其中具有Webshell信息的特征字段,使用BERT模型对特征进行向量化编码,并结合一维CNN模型从不同空间维度检测特征建立分类模型,最后使用模型对流量数据进行检测调优。实验结果表明,与以往基于流量检测方法相比,该检测系统在准确率、召回率和F1值等性能指标上表现更好,分别达到99.84%、99.83%、99.84%。 展开更多
关键词 Webshell检测 深度学习 流量检测 基于变换的双向编码表示 卷积神经网络
在线阅读 下载PDF
融合BERT的多层次语义协同模型情感分析研究 被引量:16
18
作者 胡任远 刘建华 +2 位作者 卜冠南 张冬阳 罗逸轩 《计算机工程与应用》 CSCD 北大核心 2021年第13期176-184,共9页
由于基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)的提出,改变了传统神经网络解决句子级文本情感分析问题的方法。目前的深度学习模型BERT本身学习模式为无监督学习,其需要依赖后续... 由于基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)的提出,改变了传统神经网络解决句子级文本情感分析问题的方法。目前的深度学习模型BERT本身学习模式为无监督学习,其需要依赖后续任务补全推理和决策环节,故存在缺乏目标领域知识的问题。提出一种多层协同卷积神经网络模型(Multi-level Convolutional Neural Network,MCNN),该模型能学习到不同层次的情感特征来补充领域知识,并且使用BERT预训练模型提供词向量,通过BERT学习能力的动态调整将句子真实的情感倾向嵌入模型,最后将不同层次模型输出的特征信息同双向长短期记忆网络输出信息进行特征融合后计算出最终的文本情感性向。实验结果表明即使在不同语种的语料中,该模型对比传统神经网络和近期提出的基于BERT深度学习的模型,情感极性分类的能力有明显提升。 展开更多
关键词 深度学习 文本情感分析 基于变换的双向编码器表征技术(BERT) 卷积神经网络(CNN) 协同结构
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部