为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误...为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误差最小化以提高收敛速度;最后通过分时保存、维护算法的归一化因子以降低算法计算复杂度。通过提高W1(k)的收敛速度,新算法可以更少的迭代次数获得稳定的延时估计,从而提高DFS的整体收敛速度。以回声消除为应用背景对新算法进行实验仿真,实验结果表明新算法性能显著优于其他传统的自适应算法。展开更多
在传统的LMS(Least Mean Square)算法中,固定步长的选取影响收敛速度与稳态误差,而且两者不可兼得。因此,为在相应的领域内合理使用此类算法,针对这个问题在对多种自适应滤波LMS类算法进行原理分析后,得出此类算法在不同领域的特点,对...在传统的LMS(Least Mean Square)算法中,固定步长的选取影响收敛速度与稳态误差,而且两者不可兼得。因此,为在相应的领域内合理使用此类算法,针对这个问题在对多种自适应滤波LMS类算法进行原理分析后,得出此类算法在不同领域的特点,对今后不同人群的合理使用提供了良好条件。展开更多
针对非负支撑域受限递归逆滤波(NAS-RIF)算法对噪声敏感和耗时长等缺点,提出了一种改进的NASRIF盲复原算法。首先,为了改进原始NAS-RIF算法的抗噪性能和复原效果,引入了一种新的NAS-RIF算法代价函数;其次,为了提高算法的运算效率,结合H...针对非负支撑域受限递归逆滤波(NAS-RIF)算法对噪声敏感和耗时长等缺点,提出了一种改进的NASRIF盲复原算法。首先,为了改进原始NAS-RIF算法的抗噪性能和复原效果,引入了一种新的NAS-RIF算法代价函数;其次,为了提高算法的运算效率,结合Haar小波变换,仅对低频子频带的图像进行NAS-RIF算法复原,而高频子频带的信息,则通过带间预测分别从低频子频带的复原图像中预测得到;最后,为了保证高频信息的准确性,提出了一种基于最小均方误差(MMSE)的带间预测。分别对模拟退化图像和真实图像进行了仿真实验,采用该算法得到的信噪比增益分别为5.221 6 d B和8.103 9 d B。实验结果表明:该算法在保持图像边缘细节的前提下,能够较好地抑制噪声;此外,该算法的运算效率也得到了较大的提高。展开更多
文摘为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误差最小化以提高收敛速度;最后通过分时保存、维护算法的归一化因子以降低算法计算复杂度。通过提高W1(k)的收敛速度,新算法可以更少的迭代次数获得稳定的延时估计,从而提高DFS的整体收敛速度。以回声消除为应用背景对新算法进行实验仿真,实验结果表明新算法性能显著优于其他传统的自适应算法。
文摘针对非负支撑域受限递归逆滤波(NAS-RIF)算法对噪声敏感和耗时长等缺点,提出了一种改进的NASRIF盲复原算法。首先,为了改进原始NAS-RIF算法的抗噪性能和复原效果,引入了一种新的NAS-RIF算法代价函数;其次,为了提高算法的运算效率,结合Haar小波变换,仅对低频子频带的图像进行NAS-RIF算法复原,而高频子频带的信息,则通过带间预测分别从低频子频带的复原图像中预测得到;最后,为了保证高频信息的准确性,提出了一种基于最小均方误差(MMSE)的带间预测。分别对模拟退化图像和真实图像进行了仿真实验,采用该算法得到的信噪比增益分别为5.221 6 d B和8.103 9 d B。实验结果表明:该算法在保持图像边缘细节的前提下,能够较好地抑制噪声;此外,该算法的运算效率也得到了较大的提高。