In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re...In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.展开更多
To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used a...To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used as a case study to illustrate the process of joint reaction analysis. The substructure synthesis method is applied to deriving an analytical elastodynamic model for the 3-PRS PKM device, in which the compliances of limbs and joints are considered. Each limb assembly is modeled as a spatial beam with non-uniform cross-section supported by lumped virtual springs at the centers of revolute and spherical joints. By introducing the deformation compatibility conditions between the limbs and the platform, the governing equations of motion of the system are obtained. After degenerating the governing equations into quasi-static equations, the effects of the gravity on system deflections and joint reactions are investigated with the purpose of providing useful information for the kinematic calibration and component strength calculations as well as structural optimizations of the 3-PRS PKM module. The simulation results indicate that the elastic deformation of the moving platform in the direction of gravity caused by gravity is quite large and cannot be ignored. Meanwhile, the distributions of joint reactions are axisymmetric and position-dependent. It is worthy to note that the proposed elastodynamic modeling method combines the benefits of accuracy of finite element method and concision of analytical method so that it can be used to predict the stiffness characteristics and joint reactions of a PKM throughout its entire workspace in a quick and accurate manner. Moreover, the present model can also be easily applied to evaluating the overall rigidity performance as well as statics of other PKMs with high efficiency after minor modifications.展开更多
The ilvaite-bearing skarn associations in the Galinge skarn deposit were studied to determine their physicochemical formation conditions.A thermodynamic model setting pressure of 50 MPa(Pf=Ps=50 MPa)was set up to trac...The ilvaite-bearing skarn associations in the Galinge skarn deposit were studied to determine their physicochemical formation conditions.A thermodynamic model setting pressure of 50 MPa(Pf=Ps=50 MPa)was set up to trace the skarn evolution.Petrographic evidence for replacement of garnet and magnetite by ilvaite in the early retrograde stage(Stage I)combined with thermodynamic modeling suggests that the alteration may have occurred at 400470°C under moderately high fO withΔlgfO(HM)ranges from 4 to 4.2.The model is based on a maximum 22 pressure of 50 MPa calculated from magmatic amphibole geobarometer.The continuous breakdown of ilvaite with quartz to form ferro-actinolite and magnetite occur in the late retrograde stage(Stage II).The reactions occurred at 400440°C under moderate fO(ΔlgfO(HM):4 to 4.4).In Stage III,the breakdown of ilvaite to form calcite,pyrite 22 and ferroactinolite depends on XCO which can be estimated to be in a range of 0.005 to 0.05,and the reaction would 2 occur at higher temperatures with increasing XCO.Under these conditions,the breakdown occurs at 270350°C and 2 low fO(ΔlgfO(HM):up to 5.2).The thermodynamic model for continuous evolution from Stage I to Stage III 22 completely records the conditions of the retrograde alteration,which is inconsistent with the thermobarometry imprints of fluid inclusions.Therefore,the petrography and phase relations of ilvaite are useful indicators of reaction conditions in various skarn deposit types.展开更多
Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste...Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste which is neutral on the amount of CO2. An analytical and engineering model for pyrolysis process of a single biomass particle has been presented. Using a two-stage semi global kinetic model which includes both primary and secondary reactions, the effects of parameters like shape and size of particle as well as porosity on the particle temperature profile and product yields have been investigated. Comparison of the obtained results with experimental data shows that our results are in a reasonable agreement with previous researchers' works. Finally, a sensitivity analysis is done to determine the importance of each parameter on pyrolysis of a single biomass particle which is affected by many constant parameters.展开更多
文摘In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.
基金Project(Kfkt2013-12)supported by Open Research Fund of Key Laboratory of High Performance Complex Manufacturing of Central South University,ChinaProject(2014002)supported by the Open Fund of Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,ChinaProject(51375013)supported by the National Natural Science Foundation of China
文摘To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used as a case study to illustrate the process of joint reaction analysis. The substructure synthesis method is applied to deriving an analytical elastodynamic model for the 3-PRS PKM device, in which the compliances of limbs and joints are considered. Each limb assembly is modeled as a spatial beam with non-uniform cross-section supported by lumped virtual springs at the centers of revolute and spherical joints. By introducing the deformation compatibility conditions between the limbs and the platform, the governing equations of motion of the system are obtained. After degenerating the governing equations into quasi-static equations, the effects of the gravity on system deflections and joint reactions are investigated with the purpose of providing useful information for the kinematic calibration and component strength calculations as well as structural optimizations of the 3-PRS PKM module. The simulation results indicate that the elastic deformation of the moving platform in the direction of gravity caused by gravity is quite large and cannot be ignored. Meanwhile, the distributions of joint reactions are axisymmetric and position-dependent. It is worthy to note that the proposed elastodynamic modeling method combines the benefits of accuracy of finite element method and concision of analytical method so that it can be used to predict the stiffness characteristics and joint reactions of a PKM throughout its entire workspace in a quick and accurate manner. Moreover, the present model can also be easily applied to evaluating the overall rigidity performance as well as statics of other PKMs with high efficiency after minor modifications.
基金Projects(41172076,41802080)supported by the National Natural Science Foundation of ChinaProject(1212011085528)supported by Geological Survey Program from the China Geological Survey+3 种基金Project(2019CX035)supported by Innovation-driven Plan of Central South University,ChinaProject(201411025)supported by the Scientific Research Fund from Ministry of Land and Re-sources,ChinaProject(201309)supported by the Program of High-level Geological Talents,ChinaProject(201112)supported by the Youth Geological Talents of the China Geological Survey
文摘The ilvaite-bearing skarn associations in the Galinge skarn deposit were studied to determine their physicochemical formation conditions.A thermodynamic model setting pressure of 50 MPa(Pf=Ps=50 MPa)was set up to trace the skarn evolution.Petrographic evidence for replacement of garnet and magnetite by ilvaite in the early retrograde stage(Stage I)combined with thermodynamic modeling suggests that the alteration may have occurred at 400470°C under moderately high fO withΔlgfO(HM)ranges from 4 to 4.2.The model is based on a maximum 22 pressure of 50 MPa calculated from magmatic amphibole geobarometer.The continuous breakdown of ilvaite with quartz to form ferro-actinolite and magnetite occur in the late retrograde stage(Stage II).The reactions occurred at 400440°C under moderate fO(ΔlgfO(HM):4 to 4.4).In Stage III,the breakdown of ilvaite to form calcite,pyrite 22 and ferroactinolite depends on XCO which can be estimated to be in a range of 0.005 to 0.05,and the reaction would 2 occur at higher temperatures with increasing XCO.Under these conditions,the breakdown occurs at 270350°C and 2 low fO(ΔlgfO(HM):up to 5.2).The thermodynamic model for continuous evolution from Stage I to Stage III 22 completely records the conditions of the retrograde alteration,which is inconsistent with the thermobarometry imprints of fluid inclusions.Therefore,the petrography and phase relations of ilvaite are useful indicators of reaction conditions in various skarn deposit types.
文摘Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste which is neutral on the amount of CO2. An analytical and engineering model for pyrolysis process of a single biomass particle has been presented. Using a two-stage semi global kinetic model which includes both primary and secondary reactions, the effects of parameters like shape and size of particle as well as porosity on the particle temperature profile and product yields have been investigated. Comparison of the obtained results with experimental data shows that our results are in a reasonable agreement with previous researchers' works. Finally, a sensitivity analysis is done to determine the importance of each parameter on pyrolysis of a single biomass particle which is affected by many constant parameters.