Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression a...Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R^2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weatherin~ and overburden height, respectively.展开更多
Submerged arc welding (SAW) is advantageous for joining high thickness materials in large structure due to high material deposition rate. The non-uniform heating and cooling generates the thermal stresses and subseq...Submerged arc welding (SAW) is advantageous for joining high thickness materials in large structure due to high material deposition rate. The non-uniform heating and cooling generates the thermal stresses and subsequently the residual stresses and distortion. The longitudinal and transverse residual stresses and angular distortion are generally measured in large panel structure of submerged arc welded fillet joints. Hence, the objective of this present work is to quantify the amount of residual stress and distortion in and around the weld joint due to positioning of stiffeners tack. The tacking sequence influences the level of residual stress and proper controlling of tacking sequences is required to minimize the stress. In present study, an elasto-plastic material behavior is considered to develop the thermo mechanical model which predicts the residual stress and angular distortion with varying tacking sequences. The simulated result reveals that the tacking sequence heavily influences the residual stress and deformation pattern of the single sided fillet joint. The finite element based numerical model is calibrated by comparing the experimental data from published literature. Henceforth, the angular distortions are measured from an in-house developed experimental set-up. A fair agreement between the predicted and experimental results indicates the robustness of the developed numerical model. However, the most significant conclusion from present study states that tack weld position should be placed opposite to the fillet weld side to minimize the residual stress.展开更多
The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The...The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The results suggest that:(1) As the elastic modulus,E,of the backfill material increases the surface subsidence decreases.The rate of subsidence decrease drops after E is larger than 5 GPa;(2) Fully mechanized back fill mining technology can effectively control surface deformation.The resulting surface deformation is within the specification grade I,which means surface maintenance is not needed.A site survey showed that the equivalent mining height model is capable of predicting and analyzing surface deformation and that the model is conservative enough for engineering safety.Finally,the significance of establishing a complete error correction system based on error analysis and correction is discussed.展开更多
文摘Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R^2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weatherin~ and overburden height, respectively.
基金Supported by the Indian Institute of Technology Guwahati under Grant No:SG/ME/PB/P/01
文摘Submerged arc welding (SAW) is advantageous for joining high thickness materials in large structure due to high material deposition rate. The non-uniform heating and cooling generates the thermal stresses and subsequently the residual stresses and distortion. The longitudinal and transverse residual stresses and angular distortion are generally measured in large panel structure of submerged arc welded fillet joints. Hence, the objective of this present work is to quantify the amount of residual stress and distortion in and around the weld joint due to positioning of stiffeners tack. The tacking sequence influences the level of residual stress and proper controlling of tacking sequences is required to minimize the stress. In present study, an elasto-plastic material behavior is considered to develop the thermo mechanical model which predicts the residual stress and angular distortion with varying tacking sequences. The simulated result reveals that the tacking sequence heavily influences the residual stress and deformation pattern of the single sided fillet joint. The finite element based numerical model is calibrated by comparing the experimental data from published literature. Henceforth, the angular distortions are measured from an in-house developed experimental set-up. A fair agreement between the predicted and experimental results indicates the robustness of the developed numerical model. However, the most significant conclusion from present study states that tack weld position should be placed opposite to the fillet weld side to minimize the residual stress.
基金provided by the National Natural Science Foundation of China (Nos. 51074165 and 50834004)
文摘The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The results suggest that:(1) As the elastic modulus,E,of the backfill material increases the surface subsidence decreases.The rate of subsidence decrease drops after E is larger than 5 GPa;(2) Fully mechanized back fill mining technology can effectively control surface deformation.The resulting surface deformation is within the specification grade I,which means surface maintenance is not needed.A site survey showed that the equivalent mining height model is capable of predicting and analyzing surface deformation and that the model is conservative enough for engineering safety.Finally,the significance of establishing a complete error correction system based on error analysis and correction is discussed.