期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
西安市区黄土湿陷特性研究
1
作者 康佐 亢佳伟 +3 位作者 邓国华 郑建国 王丽琴 高虎艳 《岩土工程学报》 北大核心 2025年第5期914-925,共12页
基于西安市轨道交通工程建设过程中开展的12组黄土大型试坑浸水试验和室内湿陷试验,系统研究了西安市区黄土的湿陷特征。研究表明:①西安市区范围内,各地貌单元的湿陷性由强到弱依次为渭北黄土塬>浐河三级阶地>塬前洪积台塬>... 基于西安市轨道交通工程建设过程中开展的12组黄土大型试坑浸水试验和室内湿陷试验,系统研究了西安市区黄土的湿陷特征。研究表明:①西安市区范围内,各地貌单元的湿陷性由强到弱依次为渭北黄土塬>浐河三级阶地>塬前洪积台塬>黄土梁洼﹥少陵塬(杜陵塬、神禾塬)、渭河三级阶地。自重湿陷性黄土场地占试验场地总数的50%,自重湿陷最大下限深度20 m;市区南部黄土塬均为非自重场地,与以往室内试验认识不同;②自重湿陷变形主要发生在Q3黄土地层中,现场试验实测得到自重湿陷底界多位于Q3古土壤层,仅2组试验中的Q2黄土表现出弱湿陷性。现行规范中提供的关中地区统一的修正系数高估了Q2黄土的湿陷量。③区分地貌单元和地层沉积时代,给出了修正系数建议值;④浸水湿陷的平面影响范围与自重湿陷深度和湿陷量相关,一般不超过1倍的试坑半径和1倍的实测自重湿陷深度,可作为工程周边浸水设防边界;⑤黄土湿陷变形发展过程主要包括快速下沉、缓慢下沉、下沉稳定、停水后快速下沉和停水后下沉稳定5个阶段。实测自重湿陷量越大,下沉阶段单日沉降速率越大。停水后固结沉降量最大可达95.1 mm。 展开更多
关键词 黄土 自重湿陷变形特征 浸水试验 变形修正系数 地貌类型 沉积时代
在线阅读 下载PDF
Intelligent prediction model of tunnelling-induced building deformation based on genetic programming and its application
2
作者 XU Jing-min WANG Chen-cheng +3 位作者 CHENG Zhi-liang XU Tao ZHANG Ding-wen LI Zi-li 《Journal of Central South University》 CSCD 2024年第11期3885-3899,共15页
This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtai... This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtained from 22 geotechnical centrifuge tests are used for model development and analysis using GP.Tunnel volume loss,building eccentricity,soil density,building transverse width,building shear stiffness and building load are selected as the inputs,and shear distortion is selected as the output.Results suggest that the proposed intelligent prediction model is capable of providing a reasonable and accurate prediction of framed building shear distortion due to tunnel construction with realistic conditions,highlighting the important roles of shear stiffness of framed buildings and the pressure beneath the foundation on structural deformation.It has been proven that the proposed model is efficient and feasible to analyze relevant engineering problems by parametric analysis and comparative analysis.The findings demonstrate the great potential of GP approaches in predicting building distortion caused by tunnelling.The proposed equation can be used for the quick and intelligent prediction of tunnelling induced building deformation,providing valuable guidance for the practical design and risk assessment of urban tunnel construction projects. 展开更多
关键词 building deformation genetic programming tunnel construction modification factor
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部