To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c...To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.展开更多
The theoretical formulations of Coulomb and Rankine still remain as the fundamental approaches to the analysis of most gravity-type retaining wall,with the assumption that sufficient lateral yield will occur to mobili...The theoretical formulations of Coulomb and Rankine still remain as the fundamental approaches to the analysis of most gravity-type retaining wall,with the assumption that sufficient lateral yield will occur to mobilize fully limited conditions behind the wall.The effects of the magnitude of wall movements and different wall-movement modes are not taken into consideration.The disturbance of backfill is considered to be related to the wall movement under translation mode.On the basis of disturbed state concept(DSC),a general disturbance function was proposed which ranged from-1 to 1.The disturbance variables could be determined from the measured wall movements.A novel approach that related to disturbed degree and the mobilized internal frictional angle of the backfill was also derived.A calculation method benefited from Rankine's theory and the proposed approach was established to predict the magnitude and distribution of earth pressure from the cohesionless backfill under translation mode.The predicted results,including the magnitude and distribution of earth pressure,show good agreement with those of the model test and the finite element method.In addition,the disturbance parameter b was also discussed.展开更多
As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost ...As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost and considering a temporally and directionally variable demand. An integrated bus service, consisting of all-stop and stop-skipping services is proposed and optimized subject to directional frequency conservation, capacity and operable fleet size constraints. Since the research problem is a combinatorial optimization problem, a genetic algorithm is developed to search for the optimal result in a large solution space. The model was successfully implemented on a bus transit route in the City of Chengdu, China, and the optimal solution was proved to be better than the original operation in terms of total cost. The sensitivity of model parameters to some key attributes/variables is analyzed and discussed to explore further the potential of accruing additional benefits or avoiding some of the drawbacks of stop-skipping services.展开更多
基金Supported by Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)+3 种基金National Natural Science Foundation of China(12301556)Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.
基金Project(50678158) supported by the National Natural Science Foundation of China
文摘The theoretical formulations of Coulomb and Rankine still remain as the fundamental approaches to the analysis of most gravity-type retaining wall,with the assumption that sufficient lateral yield will occur to mobilize fully limited conditions behind the wall.The effects of the magnitude of wall movements and different wall-movement modes are not taken into consideration.The disturbance of backfill is considered to be related to the wall movement under translation mode.On the basis of disturbed state concept(DSC),a general disturbance function was proposed which ranged from-1 to 1.The disturbance variables could be determined from the measured wall movements.A novel approach that related to disturbed degree and the mobilized internal frictional angle of the backfill was also derived.A calculation method benefited from Rankine's theory and the proposed approach was established to predict the magnitude and distribution of earth pressure from the cohesionless backfill under translation mode.The predicted results,including the magnitude and distribution of earth pressure,show good agreement with those of the model test and the finite element method.In addition,the disturbance parameter b was also discussed.
基金Project(B01B1203)supported by Sichuan Province Key Laboratory of Comprehensive Transportation,ChinaProject(SWJTU09BR141)supported by the Southwest Jiaotong University,China
文摘As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost and considering a temporally and directionally variable demand. An integrated bus service, consisting of all-stop and stop-skipping services is proposed and optimized subject to directional frequency conservation, capacity and operable fleet size constraints. Since the research problem is a combinatorial optimization problem, a genetic algorithm is developed to search for the optimal result in a large solution space. The model was successfully implemented on a bus transit route in the City of Chengdu, China, and the optimal solution was proved to be better than the original operation in terms of total cost. The sensitivity of model parameters to some key attributes/variables is analyzed and discussed to explore further the potential of accruing additional benefits or avoiding some of the drawbacks of stop-skipping services.