One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing...One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing equation were obtained by applying Laplace transform with respect to time,and then the pore-pressure,strain and deformation of the aquitard could be calculated by Laplace inversion.A case was analyzed to validate the correctness of the present method.Finally,some consolidation properties of the problem were analyzed.Comparison of the average degree of consolidation defined by pore pressure with that defined by settlement shows that they are different and the maximum difference is 22.8%.The influences of parameters of Merchant model and the rate of the water level on the consolidation are great.The smaller the viscosity coefficient is,the later the rate of consolidation decreases.The rate of consolidation is decreased with the decrease of the rate of the water level fall.Therefore,the lagged effect of land subsidence should be considered in the actual project.展开更多
The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by t...The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by the hollow cylinder apparatus. It is found that the stress-strain response and the dissipation process of pore water pressure are composed of three stages, including the low intensive strength stage, the superlinear strength recovery stage and the sublinear strength recovery stage, and the demarcation points of the curve of pore water pressure are lag behind those of the stress-strain response. The comparison results of the behaviour of large post-liquefaction deformation between saturated sand-gravel composites and Nanjing fine sand show that the low intensive strength stage and the superlinear strength recovery stage of saturated sand-gravel composites are shorter while the sublinear strength recovery stage is longer. A stress-strain model and a dissipation model of excess pore water pressure of liquefied sand-gravel composites are established, in which the initial confining pressure and the relative density can be considered synthetically. And it is found that the predicted results by the two models are in good agreement with experimental data.展开更多
In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfa...In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfall simulation tests and field synthetic monitoring were carried out on a typical accumulation slope of Shangrui Freeway in Guizhou Province,China.The monitoring results show that the most accumulation landslides caused by rainfall infiltration are shallow relaxation failure,whose deformation zone lies within the top 0-4 m soil layer.The deformation of slope gradually reduces from the surface,where the greatest deformation lies in,to the deep part of slope.The average percentage of infiltration during the first 2 h is 86%,and then it reduces gradually with time because of the increase of the surface runoff.The average percentage of infiltration drop to a relatively stable value(50%)after 6 h.Rainfall infiltration causes obvious increase of pore-water pressure,which may result in a reduction of shear strength due to a decrease in effective stress and wetting-induced softening.The double-effect of rainfall infiltration is the main reason of rainfall infiltration induced landslides in accumulation slope.展开更多
Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential i...Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential is non-linearly distributed in the treatment process by the combined method.However,in the previous theoretical study,the non-linear-distribution impacts of soil’s electrical potential on soft soil foundation treatment have not been considered.It is always assumed to be linear distribution,which is different from the experimental results.In this paper,the coupling consolidation model of this technology under the two-dimensional plane strain condition is initially established;and the well resistance effect,the vacuum load decreasing along the soil depth and the non-linear variation of electrical potential in the soil are considered.Then,the analytical solutions of the average excess pore water pressure and soil’s consolidation degree in the anode affected area are acquired based on the soil’s electrical potential distribution.Finally,the rationality of the analytical solution is testified by conducting an experimental model test,which proves the scientificity of the analytical solution.The analytical solution is adopted to better predict the dissipation of excess pore water pressure and soil consolidation degree when using the combined technology.This study can provide a reference with more accuracy for the engineering practices of this combined technology in the future.展开更多
Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on ...Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.展开更多
An analytical solution was presented to the unsaturated soil with a finite thickness under confinement in the lateral direction and sinusoidal cyclic loading in the vertical direction based on Fredlund's one-dimen...An analytical solution was presented to the unsaturated soil with a finite thickness under confinement in the lateral direction and sinusoidal cyclic loading in the vertical direction based on Fredlund's one-dimensional consolidation equation for unsaturated soil. The transfer relationship between the state vectors at the top surface and any depth was gained by applying the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. The excess pore-air and pore-water pressures and settlement in the Laplace-transformed domain were obtained by using the Laplace transform with the initial and boundary conditions. The analytical solutions of the excess pore-air and pore-water pressures at any depth and settlement were obtained in the time domain by performing the inverse Laplace transforms. A typical example illustrates the consolidation characteristics of unsaturated soil under sinusoidal loading from analytical results. Finally, comparisons between the analytical solutions and results of the numerical method indicate that the analytical solution is correct.展开更多
基金Project(50608038/E0806) supported by the National Natural Science Foundation of China
文摘One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing equation were obtained by applying Laplace transform with respect to time,and then the pore-pressure,strain and deformation of the aquitard could be calculated by Laplace inversion.A case was analyzed to validate the correctness of the present method.Finally,some consolidation properties of the problem were analyzed.Comparison of the average degree of consolidation defined by pore pressure with that defined by settlement shows that they are different and the maximum difference is 22.8%.The influences of parameters of Merchant model and the rate of the water level on the consolidation are great.The smaller the viscosity coefficient is,the later the rate of consolidation decreases.The rate of consolidation is decreased with the decrease of the rate of the water level fall.Therefore,the lagged effect of land subsidence should be considered in the actual project.
基金Project(90715018)supported by the National Natural Science Foundation of ChinaProject(200808022)supported by the Special Fund for the Commonweal Indusry of China+1 种基金Project(08KJA560001)supported by the Key Basic Research Program of Natural Science of University in Jiangsu ProvinceProject(CX10B_170Z)supported by the Postgraduate Scientific Innovation Program in Jiangsu Province,China
文摘The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by the hollow cylinder apparatus. It is found that the stress-strain response and the dissipation process of pore water pressure are composed of three stages, including the low intensive strength stage, the superlinear strength recovery stage and the sublinear strength recovery stage, and the demarcation points of the curve of pore water pressure are lag behind those of the stress-strain response. The comparison results of the behaviour of large post-liquefaction deformation between saturated sand-gravel composites and Nanjing fine sand show that the low intensive strength stage and the superlinear strength recovery stage of saturated sand-gravel composites are shorter while the sublinear strength recovery stage is longer. A stress-strain model and a dissipation model of excess pore water pressure of liquefied sand-gravel composites are established, in which the initial confining pressure and the relative density can be considered synthetically. And it is found that the predicted results by the two models are in good agreement with experimental data.
基金Project(50678175)supported by the National Natural Science Foundation of China
文摘In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfall simulation tests and field synthetic monitoring were carried out on a typical accumulation slope of Shangrui Freeway in Guizhou Province,China.The monitoring results show that the most accumulation landslides caused by rainfall infiltration are shallow relaxation failure,whose deformation zone lies within the top 0-4 m soil layer.The deformation of slope gradually reduces from the surface,where the greatest deformation lies in,to the deep part of slope.The average percentage of infiltration during the first 2 h is 86%,and then it reduces gradually with time because of the increase of the surface runoff.The average percentage of infiltration drop to a relatively stable value(50%)after 6 h.Rainfall infiltration causes obvious increase of pore-water pressure,which may result in a reduction of shear strength due to a decrease in effective stress and wetting-induced softening.The double-effect of rainfall infiltration is the main reason of rainfall infiltration induced landslides in accumulation slope.
基金Project(51979087)supported by the National Natural Science Foundation of ChinaProject(BK20180776)supported by the Jiangsu Natural Science Foundation,ChinaProject(202006710002)supported by the China Scholarship Council。
文摘Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential is non-linearly distributed in the treatment process by the combined method.However,in the previous theoretical study,the non-linear-distribution impacts of soil’s electrical potential on soft soil foundation treatment have not been considered.It is always assumed to be linear distribution,which is different from the experimental results.In this paper,the coupling consolidation model of this technology under the two-dimensional plane strain condition is initially established;and the well resistance effect,the vacuum load decreasing along the soil depth and the non-linear variation of electrical potential in the soil are considered.Then,the analytical solutions of the average excess pore water pressure and soil’s consolidation degree in the anode affected area are acquired based on the soil’s electrical potential distribution.Finally,the rationality of the analytical solution is testified by conducting an experimental model test,which proves the scientificity of the analytical solution.The analytical solution is adopted to better predict the dissipation of excess pore water pressure and soil consolidation degree when using the combined technology.This study can provide a reference with more accuracy for the engineering practices of this combined technology in the future.
基金Project(51008188)supported by National Natural Science Foundation of ChinaProject(KLE-TJGE-B1302)supported by Key Laboratory Fund of Geotechnical and Underground Engineering of Ministry of Education,ChinaProject(SKLGDUEK1205)supported by Open Program of State Key Laboratory for Geomechanics and Deep Underground Engineering,China
文摘Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.
基金Project(2010G016-B)supported by Science and Technology Research and Development of China
文摘An analytical solution was presented to the unsaturated soil with a finite thickness under confinement in the lateral direction and sinusoidal cyclic loading in the vertical direction based on Fredlund's one-dimensional consolidation equation for unsaturated soil. The transfer relationship between the state vectors at the top surface and any depth was gained by applying the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. The excess pore-air and pore-water pressures and settlement in the Laplace-transformed domain were obtained by using the Laplace transform with the initial and boundary conditions. The analytical solutions of the excess pore-air and pore-water pressures at any depth and settlement were obtained in the time domain by performing the inverse Laplace transforms. A typical example illustrates the consolidation characteristics of unsaturated soil under sinusoidal loading from analytical results. Finally, comparisons between the analytical solutions and results of the numerical method indicate that the analytical solution is correct.