Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histo...Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.展开更多
Hydrostatic slipper was often used in friction bearing design, allowing improvement of the latter's dynamic behavior. The influence of thermal effect on hydrostatic slipper bearing capacity of axial piston pump wa...Hydrostatic slipper was often used in friction bearing design, allowing improvement of the latter's dynamic behavior. The influence of thermal effect on hydrostatic slipper bearing capacity of axial piston pump was investigated. A set of lumped parameter mathematical models were developed based on energy conservation law of slipper/ swash plate pair. The results show that thermal equilibrium clearance due to solid thermal deformation periodically changes with shaft rotational angle. The slipper bearing capacity increases dramatically with decreasing thermal equilibrium clearance. In order to improve the slipper bearing capacity, length-to-diameter ratio of fixed damper varies from 3.5 to 8.75 and radius ratio of slipper varies from 1.5 to 2.0. In addition, the higher slipper thermal conductivity is useful to improve slipper bearing capability, but the thermal equilibrium clearance is not compromised.展开更多
A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the densit...A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP.展开更多
In order to solve the problem of weak power performance of vehicle equipped with continuously variable transmission(CVT) system working under transient operating conditions, a new CVT equipped with planetary gear mech...In order to solve the problem of weak power performance of vehicle equipped with continuously variable transmission(CVT) system working under transient operating conditions, a new CVT equipped with planetary gear mechanism and flywheel was researched, a design method of transmission parameter optimization was proposed, and the comprehensive matching control strategy was established for the new transmission system. Fuzzy controllers for throttle opening and CVT speed ratio were designed, and power performance and fuel economy of both vehicles respectively equipped with conventional CVT system and new transmission system wrere compared and analyzed by simulation. The results show that power performance and fuel economy of the vehicle equipped with new transmission system are better than that equipped with conventional CVT, thus the rationality of the parameter design method and control algorithm are verified.展开更多
文摘Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.
基金Projects(51475332,51275356)supported by the National Natural Science Foundation of China
文摘Hydrostatic slipper was often used in friction bearing design, allowing improvement of the latter's dynamic behavior. The influence of thermal effect on hydrostatic slipper bearing capacity of axial piston pump was investigated. A set of lumped parameter mathematical models were developed based on energy conservation law of slipper/ swash plate pair. The results show that thermal equilibrium clearance due to solid thermal deformation periodically changes with shaft rotational angle. The slipper bearing capacity increases dramatically with decreasing thermal equilibrium clearance. In order to improve the slipper bearing capacity, length-to-diameter ratio of fixed damper varies from 3.5 to 8.75 and radius ratio of slipper varies from 1.5 to 2.0. In addition, the higher slipper thermal conductivity is useful to improve slipper bearing capability, but the thermal equilibrium clearance is not compromised.
基金Projects(11372055,11302033)supported by the National Natural Science Foundation of ChinaProject supported by the Huxiang Scholar Foundation from Changsha University of Science and Technology,ChinaProject(2012KFJJ02)supported by the Key Labortory of Lightweight and Reliability Technology for Engineering Velicle,Education Department of Hunan Province,China
文摘A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP.
基金Project(2011BA3019)supported by the Chongqing Natural Science Foundation,China
文摘In order to solve the problem of weak power performance of vehicle equipped with continuously variable transmission(CVT) system working under transient operating conditions, a new CVT equipped with planetary gear mechanism and flywheel was researched, a design method of transmission parameter optimization was proposed, and the comprehensive matching control strategy was established for the new transmission system. Fuzzy controllers for throttle opening and CVT speed ratio were designed, and power performance and fuel economy of both vehicles respectively equipped with conventional CVT system and new transmission system wrere compared and analyzed by simulation. The results show that power performance and fuel economy of the vehicle equipped with new transmission system are better than that equipped with conventional CVT, thus the rationality of the parameter design method and control algorithm are verified.