Geotechnical stability analyses based on classical continuum may lead to remarkable underestimations on geotechnical safety.To attain better estimations on geotechnical stability,the micro-polar continuum is employed ...Geotechnical stability analyses based on classical continuum may lead to remarkable underestimations on geotechnical safety.To attain better estimations on geotechnical stability,the micro-polar continuum is employed so that its internal characteristic length(lc)can be utilized to model the shear band width.Based on two soil slope examples,the role of internal characteristic length in modeling the shear band width of geomaterial is investigated by the second-order cone programming optimized micro-polar continuum finite element method.It is recognized that the underestimation on factor of safety(FOS)calculated from the classical continuum tends to be more pronounced with the increase of lc.When the micro-polar continuum is applied,the shear band dominated by lc is almost kept unaffected as long as the adopted meshes are fine enough,but it does not generally present a slip surface like in the cases from the classical continuum,indicating that the micro-polar continuum is capable of capturing the non-local geotechnical failure characteristic.Due to the coupling effects of lc and strain softening,softening behavior of geomaterial tends to be postponed.Additionally,the bearing capacity of a geotechnical system may be significantly underestimated,if the effects of lc are not modeled or considered in numerical analyses.展开更多
Fast Lagrangian analysis of continua(FLAC) was used to study the influence of pore pressure on the mechanical behavior of rock specimen in plane strain direct shear, the distribution of yielded elements, the distribut...Fast Lagrangian analysis of continua(FLAC) was used to study the influence of pore pressure on the mechanical behavior of rock specimen in plane strain direct shear, the distribution of yielded elements, the distribution of displacement and velocity across shear band as well as the snap-back (elastic rebound) instability. The effective stress law was used to represent the weakening of rock containing pore fluid under pressure. Numerical results show that rock specimen becomes soft (lower strength and hardening modulus) as pore pressure increases, leading to higher displacement skip across shear band. Higher pore pressure results in larger area of plastic zone, higher concentration of shear strain, more apparent precursor to snap-back (unstable failure) and slower snap-back. For higher pore pressure, the formation of shear band-elastic body system and the snap-back are earlier; the distance of snap-back decreases; the capacity of snap-back decreases, leading to lower elastic strain energy liberated beyond the instability and lower earthquake or rockburst magnitude. In the process of snap-back, the velocity skip across shear band is lower for rock specimen at higher pore pressure, showing the slower velocity of snap-back.展开更多
基金Projects(2017YFC0804602,2017YFC0404802)supported by the National Key R&D Program of ChinaProject(2019JBM092)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Geotechnical stability analyses based on classical continuum may lead to remarkable underestimations on geotechnical safety.To attain better estimations on geotechnical stability,the micro-polar continuum is employed so that its internal characteristic length(lc)can be utilized to model the shear band width.Based on two soil slope examples,the role of internal characteristic length in modeling the shear band width of geomaterial is investigated by the second-order cone programming optimized micro-polar continuum finite element method.It is recognized that the underestimation on factor of safety(FOS)calculated from the classical continuum tends to be more pronounced with the increase of lc.When the micro-polar continuum is applied,the shear band dominated by lc is almost kept unaffected as long as the adopted meshes are fine enough,but it does not generally present a slip surface like in the cases from the classical continuum,indicating that the micro-polar continuum is capable of capturing the non-local geotechnical failure characteristic.Due to the coupling effects of lc and strain softening,softening behavior of geomaterial tends to be postponed.Additionally,the bearing capacity of a geotechnical system may be significantly underestimated,if the effects of lc are not modeled or considered in numerical analyses.
基金Project(50309004) supported by the National Natural Science Foundation of China
文摘Fast Lagrangian analysis of continua(FLAC) was used to study the influence of pore pressure on the mechanical behavior of rock specimen in plane strain direct shear, the distribution of yielded elements, the distribution of displacement and velocity across shear band as well as the snap-back (elastic rebound) instability. The effective stress law was used to represent the weakening of rock containing pore fluid under pressure. Numerical results show that rock specimen becomes soft (lower strength and hardening modulus) as pore pressure increases, leading to higher displacement skip across shear band. Higher pore pressure results in larger area of plastic zone, higher concentration of shear strain, more apparent precursor to snap-back (unstable failure) and slower snap-back. For higher pore pressure, the formation of shear band-elastic body system and the snap-back are earlier; the distance of snap-back decreases; the capacity of snap-back decreases, leading to lower elastic strain energy liberated beyond the instability and lower earthquake or rockburst magnitude. In the process of snap-back, the velocity skip across shear band is lower for rock specimen at higher pore pressure, showing the slower velocity of snap-back.