异常检测由于其广泛的应用一直是数据挖掘中一个重要的研究分支,它有助于研究人员获得重要的信息进而对数据做出更好的决策。提出了一种基于钉板分布稀疏变分自编码器的异常检测模型。首先,使用离散−连续混合模型钉板分布作为变分自编...异常检测由于其广泛的应用一直是数据挖掘中一个重要的研究分支,它有助于研究人员获得重要的信息进而对数据做出更好的决策。提出了一种基于钉板分布稀疏变分自编码器的异常检测模型。首先,使用离散−连续混合模型钉板分布作为变分自编码器的先验,模拟隐变量所在空间的稀疏性,得到数据特征的稀疏表示;其次,以所提出的自编码器构建深度支持向量网络,对特征空间进行压缩,并采用最优超球体区分正常数据和异常数据;再次,以数据特征和超球体中心之间的欧氏距离完成异常检测;最后,在基准数据集MNIST(modifiednational institute of standards and technology database)和Fashion-MNIST上的实验评估表明,与现存的异常检测算法相比,本文所提出的算法具有更好的检测效果。展开更多
为了解决现有装置体积大、引导光线受上肢活动影响、步态训练方案不精准等问题,研制了帕金森病人步态辅助训练装置。该装置包括:主板、锂电池、红外光发射单元、腰部束带、训练方案辅助决策系统。主板包括:电压转换模块、蓝牙模块、语...为了解决现有装置体积大、引导光线受上肢活动影响、步态训练方案不精准等问题,研制了帕金森病人步态辅助训练装置。该装置包括:主板、锂电池、红外光发射单元、腰部束带、训练方案辅助决策系统。主板包括:电压转换模块、蓝牙模块、语音处理模块等。主处理器STM32F407是装置的控制中枢;训练方案辅助决策系统核心算法为变分自编码器(Variational Auto Encoder,VAE)。本文研制的步态辅助训练装置克服了现有装置的弊端,能够根据患者患病程度、病人年龄等信息生成精准的步态训练方案。展开更多
文摘异常检测由于其广泛的应用一直是数据挖掘中一个重要的研究分支,它有助于研究人员获得重要的信息进而对数据做出更好的决策。提出了一种基于钉板分布稀疏变分自编码器的异常检测模型。首先,使用离散−连续混合模型钉板分布作为变分自编码器的先验,模拟隐变量所在空间的稀疏性,得到数据特征的稀疏表示;其次,以所提出的自编码器构建深度支持向量网络,对特征空间进行压缩,并采用最优超球体区分正常数据和异常数据;再次,以数据特征和超球体中心之间的欧氏距离完成异常检测;最后,在基准数据集MNIST(modifiednational institute of standards and technology database)和Fashion-MNIST上的实验评估表明,与现存的异常检测算法相比,本文所提出的算法具有更好的检测效果。
文摘为了解决现有装置体积大、引导光线受上肢活动影响、步态训练方案不精准等问题,研制了帕金森病人步态辅助训练装置。该装置包括:主板、锂电池、红外光发射单元、腰部束带、训练方案辅助决策系统。主板包括:电压转换模块、蓝牙模块、语音处理模块等。主处理器STM32F407是装置的控制中枢;训练方案辅助决策系统核心算法为变分自编码器(Variational Auto Encoder,VAE)。本文研制的步态辅助训练装置克服了现有装置的弊端,能够根据患者患病程度、病人年龄等信息生成精准的步态训练方案。