期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
风电和光伏随机场景生成的条件变分自动编码器方法 被引量:71
1
作者 王守相 陈海文 +1 位作者 李小平 舒欣 《电网技术》 EI CSCD 北大核心 2018年第6期1860-1867,共8页
随着风电、光伏等可再生能源渗透率的不断提高,其运行波动性及随机性对电网稳定运行、经济调度等方面带来不良影响,对可再生能源的不确定性进行建模愈加重要。随机场景分析法是解决该问题的主要方法之一,现有随机场景生成方法基于历史... 随着风电、光伏等可再生能源渗透率的不断提高,其运行波动性及随机性对电网稳定运行、经济调度等方面带来不良影响,对可再生能源的不确定性进行建模愈加重要。随机场景分析法是解决该问题的主要方法之一,现有随机场景生成方法基于历史数据对风电、光伏出力进行概率建模,进而进行抽样生成场景,模型准确性差、计算复杂度高。为简化随机场景生成步骤,提高生成效率及精度,提出了一种基于条件变分自动编码器(variational autoencoder,VAE)的风电光伏出力随机场景生成方法,较已有概率方法,所提方法可无监督地学习风电、光伏训练数据的时间、空间及波动性特点,并按条件高效地生成符合观测特点的数据,无需场景约简。通过在单一发电单元、多发电单元、指定标签场景3个场景的成功应用,验证了所提算法的有效性。 展开更多
关键词 随机场景 条件变分自动编码器 深度学习 场景生成
在线阅读 下载PDF
稀疏平衡变分自动编码器的文本特征提取 被引量:1
2
作者 车蕾 《国防科技大学学报》 EI CAS CSCD 北大核心 2022年第1期169-178,共10页
针对文本特征提取方面的高维数据特征区分度较低、基于规则的特征学习的自学习性能差、变分自动编码器存在过度剪枝等问题,提出稀疏平衡变分自动编码器(Sparse Balanced Variational AutoEncoder,SBVAE)的文本特征提取模型。为消除噪声... 针对文本特征提取方面的高维数据特征区分度较低、基于规则的特征学习的自学习性能差、变分自动编码器存在过度剪枝等问题,提出稀疏平衡变分自动编码器(Sparse Balanced Variational AutoEncoder,SBVAE)的文本特征提取模型。为消除噪声干扰,提高文本特征提取模型的鲁棒性,在文本特征提取的输入层采用双向降噪处理机制。提出一种稀疏平衡性处理,结合KL(Kullback-Leibler)项权重的模拟退火算法以缓解KL散度引发的过度剪枝的影响,强制解码器更充分地利用潜变量。此模型提高了高维数据特征的区分度。从对比分析文本特征提取模型、稀疏性能、稀疏平衡处理对隐藏空间变分下界的影响等方面深入开展实验,验证了该模型具有较好的性能。该模型在复旦数据集和Reuters数据集上的最高准确率相较于主成分分析分别提升了12.36%、8.06%。 展开更多
关键词 变分自动编码器 降噪 稀疏平衡 过度剪枝
在线阅读 下载PDF
基于代价敏感堆叠变分自动编码器的暂态稳定评估方法 被引量:34
3
作者 王怀远 陈启凡 《中国电机工程学报》 EI CSCD 北大核心 2020年第7期2213-2220,共8页
机器学习算法在训练过程中,难免会遇到样本不平衡的情况,同时,对于电力系统来说稳定样本与不稳定样本的误分类代价是不同的,因此提出一种基于代价敏感堆叠变分自动编码器(stacked variational auto-encoder,SVAE)的电力系统暂态稳定评... 机器学习算法在训练过程中,难免会遇到样本不平衡的情况,同时,对于电力系统来说稳定样本与不稳定样本的误分类代价是不同的,因此提出一种基于代价敏感堆叠变分自动编码器(stacked variational auto-encoder,SVAE)的电力系统暂态稳定评估方法。在模型训练过程中,通过改变误分类结果对模型参数调整的权重系数,修正了判别模型在不平衡样本训练过程中的倾向性,并提高了模型全局准确率。在此基础上,进一步提高不稳定样本的权重系数,有效加强了模型对不稳定样本的拟合程度,降低了不稳定样本的误判情况。在IEEE-39节点系统下的仿真结果说明,在不平衡样本情况下,所提方法可以改善判别结果的倾向性;在平衡样本情况下,通过误分类代价的设定可以有效降低不稳定样本的误判情况。 展开更多
关键词 深度学习 堆叠变分自动编码器(SVAE) 暂态稳定性 代价敏感 不平衡样本
在线阅读 下载PDF
基于堆叠变分自动编码器的电力系统暂态稳定评估方法 被引量:20
4
作者 王怀远 陈启凡 《电力自动化设备》 EI CSCD 北大核心 2019年第12期134-139,共6页
通过模型的构建和特征量的提取2个方面,提出了一种具有较好抗噪能力的暂态稳定性判别模型。模型的构建采用堆叠变分自动编码器,并在训练过程中引入L2正则化,加强了稳定性判别模型的泛化能力。同时,特征量的提取时刻与传统方法不同,通过... 通过模型的构建和特征量的提取2个方面,提出了一种具有较好抗噪能力的暂态稳定性判别模型。模型的构建采用堆叠变分自动编码器,并在训练过程中引入L2正则化,加强了稳定性判别模型的泛化能力。同时,特征量的提取时刻与传统方法不同,通过设定所有发电机最大功角差值的阈值,当系统发展至该阈值时,进行特征量的提取。在IEEE 39节点系统中进行仿真验证,仿真结果表明,采用上述特征量提取方法,大幅降低了稳定性判别模型的误判率,同时设定合理的阈值并不会影响实时控制措施的启动,加强了模型的抗噪能力。 展开更多
关键词 深度学习 堆叠变分自动编码器 暂态 稳定性 抗噪能力 特征量 电力系统
在线阅读 下载PDF
融合复杂先验与注意力机制的变分自动编码器 被引量:1
5
作者 沈学利 马玉营 梁振兴 《计算机工程》 CAS CSCD 北大核心 2022年第11期55-61,共7页
传统变分自动编码器模型通常使用标准正态分布作为隐向量先验,当应用于推荐系统等复杂任务时容易导致模型过度正则化和隐向量解耦表现不佳。融合复杂隐向量先验与注意力机制,建立变分自动编码器模型。使用多层神经网络生成的隐向量先验... 传统变分自动编码器模型通常使用标准正态分布作为隐向量先验,当应用于推荐系统等复杂任务时容易导致模型过度正则化和隐向量解耦表现不佳。融合复杂隐向量先验与注意力机制,建立变分自动编码器模型。使用多层神经网络生成的隐向量先验分布替代标准正态分布作为假设先验分布,使得模型能根据数据学习先验分布并获得更多的潜在表征。在单层隐向量的基础上添加辅助隐向量,联合辅助隐向量与数据特征向量再生成隐向量,增强了隐向量的低维表现能力和解耦性。借助注意力机制的特征信息选择特点,对隐向量中重要节点赋予更大的权重值,使其能传递更重要的信息。在数据集Movielens-1M、Movielens-Latest-Small、Movielens-20M和Netflix上的实验结果表明,该模型的Recall@20、Recall@50、NDCG@100相较于基线模型平均提升了12.95%、10.80%、10.48%,具有更高的推荐精确度。 展开更多
关键词 推荐系统 协同过滤 深度学习 变分自动编码器 辅助隐向量 复杂先验 注意力机制
在线阅读 下载PDF
基于标签感知变分自编码器的多标签分类
6
作者 孙宏健 徐鹏宇 +2 位作者 刘冰 景丽萍 于剑 《计算机科学与探索》 北大核心 2025年第3期714-723,共10页
随着互联网的兴起,各式各样的数据急速增长,如何高效地利用这些样本数据成为数据挖掘领域的重要问题。多标签分类任务作为机器学习与数据挖掘领域的重要任务,旨在为样本标注多个标签类别。目前的方法大多仅对特征分支进行嵌入表示学习,... 随着互联网的兴起,各式各样的数据急速增长,如何高效地利用这些样本数据成为数据挖掘领域的重要问题。多标签分类任务作为机器学习与数据挖掘领域的重要任务,旨在为样本标注多个标签类别。目前的方法大多仅对特征分支进行嵌入表示学习,并未考虑到特征和标签之间的语义关联性,缺乏对特征嵌入空间的有效约束,从而导致学习到的特征嵌入针对性不足。在标签相关性学习方面,现有的大多数方法主要关注低阶标签相关性,在面对复杂的实际标签场景时,多个标签之间的高阶相关性学习不足的问题变得更为突出。为解决上述问题,从嵌入表示学习和标签相关性学习出发,提出了一种基于标签感知变分自编码器的多标签分类方法。针对嵌入表示学习,提出使用特征和标签双流变分自编码器同时学习和对齐特征和标签的嵌入空间,对特征嵌入空间添加标签引导来增强特征嵌入。采用基于标签语义的交叉注意力机制,将特定标签信息加入到特征嵌入中,最终获得标签感知后的判别性特征嵌入。针对标签相关性学习,采用共享解码器中的多层自注意力机制,充分融合多个标签的相似性信息,通过不同标签间的共现交互,学习到标签高阶相关性表示并用于交叉感知特征嵌入。在四个不同领域的数据集上得到的实验结果表明,提出的方法能够有效增强特征和标签嵌入,并充分捕获标签之间高阶相关性信息用于多标签分类任务,通过与多个最先进算法在多个评价指标上进行比较分析,验证了提出的方法在性能上的显著优越性。 展开更多
关键词 多标签 嵌入空间学习 变分自动编码器 TRANSFORMER 标签相关性
在线阅读 下载PDF
基于变分自编码器掩蔽重建的骨骼点动作识别方法
7
作者 王雪婷 郭新 +1 位作者 汪松 陈恩庆 《图学学报》 北大核心 2025年第2期270-278,共9页
掩蔽自编码器(MAE)由于其强大的自监督学习能力被用于不同领域,特别是在数据被遮蔽或可用训练数据较少的任务中获得了较好的效果。但在诸如动作识别等视觉分类任务中,由于自编码器结构中编码器学习特征的能力有限,因此分类效果欠佳。为... 掩蔽自编码器(MAE)由于其强大的自监督学习能力被用于不同领域,特别是在数据被遮蔽或可用训练数据较少的任务中获得了较好的效果。但在诸如动作识别等视觉分类任务中,由于自编码器结构中编码器学习特征的能力有限,因此分类效果欠佳。为了实现用少量标注数据对模型进行训练,并提高自编码器在骨骼点动作识别任务上的特征提取能力,提出一种基于变分自编码器(VAE)的时空掩蔽重建模型(SkeletonMVAE)用于骨骼点动作识别。该模型在传统掩蔽重建模型的编码器后引入VAE的隐空间,使得编码器学习到数据的潜在结构和更丰富的信息,并通过参数β调控重建质量,对骨骼点数据进行掩蔽重建的预训练。预训练好的编码器被用作下游分类任务的特征提取器时,其输出的特征表示更紧凑、更具判别能力和鲁棒性,从而有助于提高模型分类精度和泛化能力,提升仅有少量标注数据训练情况下的模型性能。在NTU-60和NTU-120数据集上的实验结果表明了该方法在骨骼点动作识别任务上的有效性。 展开更多
关键词 人体骨骼点动作识别 自监督学习 时空掩蔽重建 变分自动编码器 隐空间聚合
在线阅读 下载PDF
基于变分循环自动编码器的协同推荐方法 被引量:10
8
作者 李晓菊 顾君忠 程洁 《计算机应用与软件》 北大核心 2018年第9期258-263,280,共7页
基于概率矩阵分解的协同过滤是推荐系统中应用最广泛的方法。它通过学习用户-商品评分矩阵的两个低维近似矩阵来做推荐。但是在评分矩阵极其稀疏的情况下,概率矩阵分解的推荐准确性就会下降。为了缓解这个问题,提出一种基于变分循环自... 基于概率矩阵分解的协同过滤是推荐系统中应用最广泛的方法。它通过学习用户-商品评分矩阵的两个低维近似矩阵来做推荐。但是在评分矩阵极其稀疏的情况下,概率矩阵分解的推荐准确性就会下降。为了缓解这个问题,提出一种基于变分循环自动编码器的概率矩阵分解方法,该方法综合考虑商品描述文本和评分矩阵,先将商品的描述文本编码成一个特征向量,然后将该特征向量融合到概率矩阵分解模型中来缓解稀疏问题。该方法在编码商品特征向量时,考虑了商品内容的上下文信息和语义信息,并且该特征向量服从高斯分布。在两个真实数据集上的验证结果表明:我们的模型与其他模型相比较,在评分矩阵极其稀疏的情况下,能更有效地预测用户感兴趣的商品列表,提高推荐准确性。 展开更多
关键词 协同过滤 概率矩阵 稀疏问题 变分自动编码器 循环神经网络
在线阅读 下载PDF
面向异质变分超图自动编码器的超边链接预测模型
9
作者 杨伟英 王英 吴越 《计算机应用研究》 CSCD 北大核心 2021年第5期1508-1513,1519,共7页
如何采用超边建模网络数据中的多元关联关系,实现潜在超边链接关系的预测具有重要的现实意义。现有方法主要集中于研究具有成对关系的网络数据,然而,直接将现有的链接预测方法用于超图网络中的超边链接预测具有一定的局限性。因此,提出... 如何采用超边建模网络数据中的多元关联关系,实现潜在超边链接关系的预测具有重要的现实意义。现有方法主要集中于研究具有成对关系的网络数据,然而,直接将现有的链接预测方法用于超图网络中的超边链接预测具有一定的局限性。因此,提出基于异质变分超图自动编码器的超边链接预测模型(heterogeneous variational hypergraph autoencoder,HVGAE)。首先,利用超图卷积实现变分超图自动编码器,将超图网络数据转换成一种低维空间表示;其次,加入节点近邻度函数,最大程度地保留其结构信息,从而构建异质超图网络超边链接预测模型。针对三种不同类型的超图网络进行实验,结果表明相比其他的基准方法,HVGAE模型获得了较好的预测结果,说明其能够较好地解决超图网络中的超边链接预测问题。 展开更多
关键词 异质信息网络 自动编码器 表示学习 链接预测 超图
在线阅读 下载PDF
一种基于条件变分自编码器的加密流量识别方法 被引量:1
10
作者 栗刚 孙中军 +1 位作者 翟江涛 戴跃伟 《计算机应用研究》 CSCD 北大核心 2020年第S01期301-303,共3页
传统模型在识别加密流量方面通常存在特征提取困难和没有考虑到样本类别不平衡的问题,针对此问题,提出了一种在类别不平衡条件下的基于条件变分自编码器的加密流量识别模型。首先,通过SMOTE算法平衡原始数据集,解决了由于样本类别不平... 传统模型在识别加密流量方面通常存在特征提取困难和没有考虑到样本类别不平衡的问题,针对此问题,提出了一种在类别不平衡条件下的基于条件变分自编码器的加密流量识别模型。首先,通过SMOTE算法平衡原始数据集,解决了由于样本类别不平衡造成模型欠拟合或过拟合的问题。其次,提取数据流前n个字节,并使用条件变分自动编码器模型自动提取分类特征隐层变量Z。最后,把m维的隐层变量Z输入基于遗传算法改进的随机森林分类器进行分类评估。实验表明,较现有的加密识别模型,所提方法不仅具有较快的收敛速度,而且在精确率、召回率和F1-measure评价指标上分别有较大的提高。 展开更多
关键词 加密流量 SMOTE 条件变分自动编码器 遗传算法 随机森林
在线阅读 下载PDF
基于变分自编码器的多隐变量双向推理模型 被引量:1
11
作者 赵雁斌 苏锦钿 《计算机科学》 CSCD 北大核心 2023年第10期176-183,共8页
开放域对话系统的关键任务之一是生成丰富多样且连贯的对话回复,但是仅从上文信息进行单向推理无法达到这一目标。针对该问题,提出了基于多隐变量的双向推理模型MLVBI(Multiple Latent Variables Bidirectional Inference)。首先,在语... 开放域对话系统的关键任务之一是生成丰富多样且连贯的对话回复,但是仅从上文信息进行单向推理无法达到这一目标。针对该问题,提出了基于多隐变量的双向推理模型MLVBI(Multiple Latent Variables Bidirectional Inference)。首先,在语言模型中结合变分自动编码器并将单向推理扩充到双向推理,将语料分割为上文、查询与回复后,使用正向推理从查询中推理出回复用于学习正常语序信息,同时使用反向推理从回复中推理出查询用于学习额外主题信息,最后融合成双向推理,使得模型生成更连贯的回复。其次,针对双向推理过程中单个隐变量解释能力不足的问题,引入多个隐变量进一步提高生成对话的多样性。实验结果表明,MLVBI在两个开放域数据集DailyDialog和PersonalChat上的准确性和多样性都达到了当前最佳的效果,并且消融实验也证明了双向推理和多隐变量的有效性。 展开更多
关键词 对话生成 变分自动编码器 双向推理 长短时记忆网络
在线阅读 下载PDF
基于自动编码器隐空间分类的建模侧信道分析
12
作者 姬宇航 张驰 +1 位作者 陆相君 谷大武 《密码学报》 CSCD 2023年第4期836-851,共16页
侧信道分析是现实世界密码系统的主要威胁之一,建模侧信道分析是一类重要的侧信道分析方法,深度学习技术的引入可拓宽建模侧信道分析的应用场景、提升分析效率.自动编码器(auto-encoder,AE)与变分自动编码器(variational AE,VAE)是被广... 侧信道分析是现实世界密码系统的主要威胁之一,建模侧信道分析是一类重要的侧信道分析方法,深度学习技术的引入可拓宽建模侧信道分析的应用场景、提升分析效率.自动编码器(auto-encoder,AE)与变分自动编码器(variational AE,VAE)是被广泛研究的深度学习模型,本文将它们引入建模侧信道分析,提出了基于AE与基于VAE隐空间分类的建模侧信道分析方法,并从生成模型的角度对这两种方法的可行性进行了分析.AE和VAE中间产生的隐空间特征可视为侧信道曲线的低维生成特征,提出的两种方法通过训练相应的AE和VAE来提取出能表征原始侧信道曲线的隐空间特征,并通过VAE探讨了隐空间分布为高斯分布时对建模分析效率的影响.随后提出了三种隐空间特征分类策略:基于欧氏距离的分类策略、基于KL散度的分类策略以及基于支持向量机的分类策略,这些策略可对提取出的隐空间特征进行分类,从而完成建模侧信道分析.在DPAv4.1与增加了高斯噪音的ASCAD数据集上的实验结果表明,基于AE和VAE的建模侧信道分析方法使用三种分类策略的攻击效果均大幅度优于池化模板.从猜测熵的角度看,基于VAE的方法仅需10条DPAv4.1的曲线与1660条加了噪音的ASCAD曲线即可使得两者猜测熵为0,而模板攻击则分别分别需要84条和3899条曲线,效率提升分别达到了88.1%与54.7%.这说明在建模侧信道分析的场景下,VAE有着很好的应用潜能. 展开更多
关键词 建模侧信道 自动编码器 变分自动编码器 隐空间 深度学习生成模型
在线阅读 下载PDF
生成式深度学习在目标导向分子设计中的应用进展
13
作者 王纪峰 汪莹 《中国材料进展》 北大核心 2025年第5期424-435,450,共13页
分子设计作为化学与材料科学中的一项核心任务,面临着在庞大的化学空间中高效筛选并开发具备特定功能的分子的问题,传统方法在效率和探索性方面存在明显局限。近年来,生成式深度学习的兴起为分子设计提供了自动化与智能化的新路径。综... 分子设计作为化学与材料科学中的一项核心任务,面临着在庞大的化学空间中高效筛选并开发具备特定功能的分子的问题,传统方法在效率和探索性方面存在明显局限。近年来,生成式深度学习的兴起为分子设计提供了自动化与智能化的新路径。综述了生成式深度学习在分子设计中的应用进展,首先对不同分子表示方法(如SMILES、分子图和三维结构表示)进行比较,分析了各自的优缺点。随后,综合评估了3种主流生成式模型:生成对抗网络(GAN)、变分自动编码器(VAE)和去噪扩散概率模型(DDPM),并探讨了生成式模型在目标导向分子设计中的应用,重点分析不同模型在分子生成质量与性质优化方面的差异。最后,基于现有技术的研究进展,提出了未来生成式模型在分子设计领域的研究方向。 展开更多
关键词 子生成 生成式深度学习 生成对抗网络 变分自动编码器 去噪扩散概率模型 模型性能评估框架 子表示
在线阅读 下载PDF
注意力协同辅助变分推荐算法 被引量:3
14
作者 康雁 王沛尧 +3 位作者 李浩 李晋源 杨其越 崔国荣 《计算机应用研究》 CSCD 北大核心 2020年第11期3250-3254,共5页
针对推荐算法中辅助信息和用户评论输入的高维度和样本不足的问题,基于变分自动编码器的非线性建模能力,与注意力机制的关联数据增强的特质,提出了注意力协同辅助变分自编码器推荐模型(sVAE-a)。该模型采用协同辅助变分自动编码来对辅... 针对推荐算法中辅助信息和用户评论输入的高维度和样本不足的问题,基于变分自动编码器的非线性建模能力,与注意力机制的关联数据增强的特质,提出了注意力协同辅助变分自编码器推荐模型(sVAE-a)。该模型采用协同辅助变分自动编码来对辅助信息进行建模;同时通过注意力机制将辅助信息结合到协同变分自动编码器架构中,对隐变量进行加强,为解码器提供更干净的特征;最后通过变分推断来对辅助信息和用户评论近似分布,通过训练参数得到推荐模型。在MovieLens-20M数据集上的实验结果表明,该方法无论在基本的召回率,还是进一步的覆盖率和归一化折损累计增益度(NDCG)指标上都有相应的提升。该模型易于实现,可结合不同类型的输入与辅助信息,提升推荐效能。 展开更多
关键词 推荐系统 注意力机制 辅助信息 变分自动编码器
在线阅读 下载PDF
基于积极概率分布引导的水下图像增强网络
15
作者 朱立忠 王雅鑫 郭宝仁 《现代电子技术》 北大核心 2024年第23期15-21,共7页
针对水下环境复杂多变,导致现存算法难以稳定恢复水下退化图像的问题,文中提出一种基于积极概率分布引导的水下图像增强网络,该网络通过构建积极样本概率引导框架,从混合样本中估计其特征概率分布来引导网络恢复退化图像。首先,提出多... 针对水下环境复杂多变,导致现存算法难以稳定恢复水下退化图像的问题,文中提出一种基于积极概率分布引导的水下图像增强网络,该网络通过构建积极样本概率引导框架,从混合样本中估计其特征概率分布来引导网络恢复退化图像。首先,提出多分支信息提取架构获取输入特征的多空间特征,并分别在空间、像素、通道等方面增强图像特征分布;其次,结合条件变分自动编码器与自适应实例归一化获取特征分布,并改进现有风格迁移算法增强图像颜色与对比度;最后,结合多项损失函数进一步增强网络的鲁棒性,提高图像质量。实验结果表明,所提方法输出图像色泽清晰、颜色均衡,在多个数据集上的定性定量指标均优于对比的经典和新颖算法,对真实海洋工作具有重要意义。 展开更多
关键词 水下图像增强 概率 条件变分自动编码器 自适应实例归一化 注意力机制 色偏校正
在线阅读 下载PDF
基于CVAE的时变工况轴承运行异常检测 被引量:2
16
作者 温广瑞 周浩轩 +1 位作者 苏宇 陈雪峰 《振动.测试与诊断》 EI CSCD 北大核心 2023年第1期1-8,194,共9页
数据驱动的异常检测技术被广泛应用于复杂机械设备状态监测中,工况(operating conditions,简称OCs)变化会导致监测数据的分布漂移,使传统数据驱动的异常检测方法的准确性受到极大干扰。为了解决时变工况下工况和健康状态之间的耦合问题... 数据驱动的异常检测技术被广泛应用于复杂机械设备状态监测中,工况(operating conditions,简称OCs)变化会导致监测数据的分布漂移,使传统数据驱动的异常检测方法的准确性受到极大干扰。为了解决时变工况下工况和健康状态之间的耦合问题,提出了一个新的特征解耦学习框架。首先,基于变分自动编码器(variation auto encoder,简称VAE)构建一个特征解耦条件变分自动编码器(conditional variation auto encoder,简称CVAE)网络,实现工况和健康状态的解耦;其次,对解耦后的健康状态相关特征进行降维处理,构建异常指标(anomaly indicator,简称ANI);然后,将ANI与统计异常阈值相结合,实现时变工况下轴承的异常检测;最后,通过基于时变转速退化的轴承加速疲劳退化实验,验证了该方法的有效性以及所构建的健康指标在消除时变工况干扰方面的优越性。 展开更多
关键词 工况 异常检测 条件变分自动编码器 轴承
在线阅读 下载PDF
基于分布式扰动的文本对抗训练方法
17
作者 沈志东 岳恒宪 《计算机工程》 CAS CSCD 北大核心 2023年第9期16-22,共7页
文本对抗防御旨在增强神经网络模型对不同对抗攻击的抵御能力,目前的文本对抗防御方法通常只能对某种特定对抗攻击有效,对于原理不同的对抗攻击效果甚微。为解决文本对抗防御方法的不足,提出一种文本对抗分布训练(TADT)方法,将TADT形式... 文本对抗防御旨在增强神经网络模型对不同对抗攻击的抵御能力,目前的文本对抗防御方法通常只能对某种特定对抗攻击有效,对于原理不同的对抗攻击效果甚微。为解决文本对抗防御方法的不足,提出一种文本对抗分布训练(TADT)方法,将TADT形式化为一个极小极大优化问题,其中内部最大化的目标是了解每个输入示例的对抗分布,外部最小化的目标是通过最小化预期损失来减小对抗示例的数量,并对基于梯度下降和同义词替换的攻击方法进行研究。在2个文本分类数据集上的实验结果表明,相比于DNE方法,在PWWS、GA、UAT等3种不同的对抗攻击下,TADT方法的准确率平均提升2%,相比于其他方法提升了10%以上,且在不影响干净样本准确率的前提下显著提升了模型的鲁棒性,并在各种对抗攻击下具有较高的准确率,展示了良好的泛化性能。 展开更多
关键词 文本对抗 对抗训练 变分自动编码器 梯度下降 蒙特卡罗采样
在线阅读 下载PDF
基于水下机器视觉的大西洋鲑摄食行为分类 被引量:33
18
作者 张佳林 徐立鸿 刘世晶 《农业工程学报》 EI CAS CSCD 北大核心 2020年第13期158-164,共7页
根据鱼群摄食行为状态进行水产养殖精准投喂控制,是有效提高饵料利用率降低水体污染的关键技术。目前,大多数基于机器视觉的鱼类摄食行为研究都是在实验室对真实养殖环境进行模拟并采用水上摄像机获取数据,由于光照条件和养殖环境的影响... 根据鱼群摄食行为状态进行水产养殖精准投喂控制,是有效提高饵料利用率降低水体污染的关键技术。目前,大多数基于机器视觉的鱼类摄食行为研究都是在实验室对真实养殖环境进行模拟并采用水上摄像机获取数据,由于光照条件和养殖环境的影响,该数据无法反映大西洋鲑在实际生产状况下的摄食行为,因此应用范围有限。为解决此问题,该研究提出一种基于真实工厂化养殖环境的鱼类摄食行为分类算法。该算法使用水下观测方式并采用视频序列作为样本,首先利用变分自动编码器对视频序列样本进行逐帧编码以产生所有帧对应的高斯均值和方差向量,分别联立所有均值和方差向量得到均值特征矩阵和方差特征矩阵。然后将特征矩阵输入到卷积神经网络中,实现对鱼群的摄食行为分类。试验结果表明,在真实的工厂化养殖环境下,该研究所提出的方法综合准确率达到了89%,与已有的基于单张图像的鱼类摄食行为分类方法相比,综合准确率提高了14个百分点,召回率提高了15个百分点。研究结果可为基于鱼类摄食行为的鱼饵精准投喂控制提供参考。 展开更多
关键词 水产养殖 机器视觉 鱼群摄食行为 视频 变分自动编码器
在线阅读 下载PDF
数据不依赖获取的质谱数据的深度学习分析方法 被引量:1
19
作者 何情祖 钟传奇 +2 位作者 李翔 帅建伟 韩家淮 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期97-103,共7页
近年来,数据不依赖获取(data-independent acquisition,DIA)质谱技术在蛋白质组学领域内被广泛关注.然而DIA质谱数据具有维度高、背景噪声大、多种信号混合等特点,这使得DIA质谱数据的分析成为一大挑战.本文提出一种基于深度学习的可直... 近年来,数据不依赖获取(data-independent acquisition,DIA)质谱技术在蛋白质组学领域内被广泛关注.然而DIA质谱数据具有维度高、背景噪声大、多种信号混合等特点,这使得DIA质谱数据的分析成为一大挑战.本文提出一种基于深度学习的可直接处理DIA质谱数据的算法:Ultra-DIA.该算法使用深度变分自动编码器提取离子信号的特征来区分不同肽段产生的子离子,最终生成虚拟谱图,进而对肽段和蛋白进行定性和定量分析.对于测试数据,该算法找到的肽段数量和蛋白数量比主流算法DIA-Umpire分别多61.4%和64.5%.此外,相较于DIA-Umpire,该算法能够找到更多低浓度的蛋白. 展开更多
关键词 深度学习 变分自动编码器 数据不依赖获取 质谱数据
在线阅读 下载PDF
基于注意力的VAE-ConvLSTM模型的剩余寿命预测研究 被引量:1
20
作者 马前 刘胜全 +2 位作者 刘艳 郑明明 解舒淇 《控制工程》 CSCD 北大核心 2024年第3期545-552,共8页
为解决传统有监督算法难以达到较高预测精度的问题,提出了一种新的半监督模型。首先,将不同传感器采集的监测数据直接作为网络输入,减少了可能出现的信息损失;接着,在无监督部分采用变分自动编码器(variationalautoencoder,VAE),以自动... 为解决传统有监督算法难以达到较高预测精度的问题,提出了一种新的半监督模型。首先,将不同传感器采集的监测数据直接作为网络输入,减少了可能出现的信息损失;接着,在无监督部分采用变分自动编码器(variationalautoencoder,VAE),以自动提取输入数据的深层表达;然后,在有监督部分使用卷积长短期记忆(convolutionallongshort-term memory, ConvLSTM)网络进一步提取时序数据的时空特征,并引入注意力机制,提高重要特征因子的权重;最后,在NASA提供的C-MAPSS数据集上进行对比实验,以均方根误差和数据集自定义的Score作为评价指标。实验结果表明,所提出的模型在复杂预测场景中取得了最好的结果,证明了该模型的有效性。 展开更多
关键词 剩余使用寿命 变分自动编码器 卷积长短期记忆 注意力机制
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部