期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于k-means聚类和变分位鲁棒极限学习机的短期负荷预测方法 被引量:18
1
作者 林志坚 鲁迪 +3 位作者 林锐涛 王星华 许韩斌 彭显刚 《智慧电力》 北大核心 2019年第3期46-53,共8页
随着售电侧市场的逐步开放,集中式的供售电模式被打破,为获取更精确的区域短期负荷预测值,提出一种基于k-means聚类和变分位鲁棒极限学习机的短期负荷预测方法。首先利用传统的k-means聚类算法对历史电力负荷数据进行负荷模式的提取,获... 随着售电侧市场的逐步开放,集中式的供售电模式被打破,为获取更精确的区域短期负荷预测值,提出一种基于k-means聚类和变分位鲁棒极限学习机的短期负荷预测方法。首先利用传统的k-means聚类算法对历史电力负荷数据进行负荷模式的提取,获取相同用电行为的用户负荷曲线。然后采用变分位鲁棒极限学习机对不同类负荷曲线分别建立预测模型,最后叠加单个的预测值形成最终的预测结果。通过设定不同的分位值来模拟不同的预测场景,以此得到所有可能性的预测值,即实现变分位-多场景的VQR-ORELM灵活预测。为验证所提方法的有效性,采用2个实际案例进行仿真分析。结果表明,相对于支持向量机、BP神经网络、极限学习机模型、鲁棒极限学习机模型,所提模型在聚类前后预测精度始终最高,进一步验证了所提方法的优越性和灵活性。通过k-means聚类后,所有模型预测性能都有较大提高。 展开更多
关键词 K-MEANS聚类 变分位鲁棒极限学习机 短期负荷预测
在线阅读 下载PDF
基于混合粒子群算法和多分位鲁棒极限学习机的短期风速预测方法 被引量:12
2
作者 鲁迪 王星华 贺小平 《电力系统保护与控制》 EI CSCD 北大核心 2019年第5期115-122,共8页
为实现高精度的短期风速预测,提出一种基于混合粒子群算法和多分位鲁棒极限学习机的短期风速预测方法。在信号处理阶段,利用时变滤波经验模态分解技术将原始风速序列分解为若干子模式以降低其不稳定性。然后采用混合粒子群算法对每一个... 为实现高精度的短期风速预测,提出一种基于混合粒子群算法和多分位鲁棒极限学习机的短期风速预测方法。在信号处理阶段,利用时变滤波经验模态分解技术将原始风速序列分解为若干子模式以降低其不稳定性。然后采用混合粒子群算法对每一个子模式进行特征提取,接着利用多分位鲁棒极限学习机分别建立预测模型并利用混合粒子群算法进行参数优化,最后对每个子模式的预测值进行聚合计算得到最终的预测结果。仿真结果表明:在考虑使用混合粒子群算法进行特征提取和模型参数优化后,所提方法具有更高的预测精度。同时基于时变滤波法的经验模态分解技术能够进一步提高预测准确性。 展开更多
关键词 短期风速预测 极限学习 混合粒子群算法 滤波经验模态
在线阅读 下载PDF
基于分位回归鲁棒极限学习机的短时负荷预测方法 被引量:3
3
作者 陈明帆 宁光涛 +2 位作者 何礼鹏 黄立毅 覃丹 《水电能源科学》 北大核心 2018年第10期206-209,共4页
针对短期负荷预测对电力系统运行管理和优化调度的影响,提出一种基于分位回归鲁棒极限学习机的短时负荷预测方法,即先对所收集的历史负荷数据进行归一化处理,然后利用自相关分析提取最相关的历史负荷数据作为模型的输入变量,再融合鲁棒... 针对短期负荷预测对电力系统运行管理和优化调度的影响,提出一种基于分位回归鲁棒极限学习机的短时负荷预测方法,即先对所收集的历史负荷数据进行归一化处理,然后利用自相关分析提取最相关的历史负荷数据作为模型的输入变量,再融合鲁棒极限学习机和分位回归建立负荷预测基本模型,最后利用某电力公司2016年采样频率为30min的数据进行实例分析,试验数据表明相比极限学习机(ELM)、分位回归(QR)和分位回归支持向量机(QR-SVM),所提模型预测精度更高,验证了所提模型和算法的可行性和有效性。 展开更多
关键词 短期负荷预测 回归 极限学习 自相关
在线阅读 下载PDF
加权多分位鲁棒ELM的短期负荷预测方法 被引量:4
4
作者 鲁迪 王星华 +2 位作者 刘升伟 陈豪君 贺小平 《电力系统及其自动化学报》 CSCD 北大核心 2020年第3期33-38,共6页
为获取足够精确的短期负荷预测值作为电力系统规划和运行的依据,提出一种加权多分位鲁棒极限学习机ELM(extreme learning machine)的短期负荷预测方法。首先融合分位回归与鲁棒ELM形成多分位鲁棒ELM基本预测模型,然后通过选取不同的分... 为获取足够精确的短期负荷预测值作为电力系统规划和运行的依据,提出一种加权多分位鲁棒极限学习机ELM(extreme learning machine)的短期负荷预测方法。首先融合分位回归与鲁棒ELM形成多分位鲁棒ELM基本预测模型,然后通过选取不同的分位值来模拟所有的可能性预测场景,以此得到不同分位场景下的预测值。最后按照“误差大、权值小;误差小、权值大”的误差反馈加权原则对上述不同分位下的预测值进行加权求和,以此得到最终的预测结果。实例证明该混合模型预测方法适用性强,且能取得较高的预测精度。 展开更多
关键词 短期负荷预测 加权多极限学习 误差反馈加权
在线阅读 下载PDF
基于VMD-ORELM-EC的超短期风速组合预测模型 被引量:1
5
作者 谢东良 郅伦海 +1 位作者 周康 胡峰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第5期703-711,共9页
为提高超短期风速预测的精度,文章提出一种基于变分模态分解(variational mode decomposition,VMD)、离群鲁棒极限学习机(outlier-robust extreme learning machine,ORELM)和误差修正(error correction,EC)的超短期风速组合预测模型VMD-... 为提高超短期风速预测的精度,文章提出一种基于变分模态分解(variational mode decomposition,VMD)、离群鲁棒极限学习机(outlier-robust extreme learning machine,ORELM)和误差修正(error correction,EC)的超短期风速组合预测模型VMD-ORELM-EC。首先利用VMD将原始风速序列分解,并对每个分解子序列分别建立ORELM模型,将各子模型预测结果相加得到模型初步预测序列;然后将原始风速序列与初步预测序列相减得到模型的误差序列,并对误差序列进行VMD分解,对分解得到的误差子序列建立ORELM模型,从而得到误差预测序列;最后将模型的初步预测序列与误差预测序列组合得到最终的风速预测序列。利用该文提出的预测模型对北京测风塔实测的风速数据进行分析,结果表明模型可以有效挖掘风速序列特性,在超短期风速预测上具有较高的预测性能。 展开更多
关键词 超短期风速预测 模态解(VMD) 离群极限学习(ORELM) 误差修正(EC)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部