Rain-wind-induced vibration of cable was studied based on previous research achievements. According to the quasi-steady assumption, the governing equation of vertical motion of the cable was derived and the criterion ...Rain-wind-induced vibration of cable was studied based on previous research achievements. According to the quasi-steady assumption, the governing equation of vertical motion of the cable was derived and the criterion for unstable motion and occurrence mechanism was studied. A comparison was performed between the oscillation responses of the stay cable obtained from calculated model and previous results. The results indicate that the analysis model can reflect the main characteristics of wind-rain-induced vibrationt of the cable which is amplitude- and velocity-restricted, and it is probably related with the periodic vortex shedding of wake flow. It is essential for the occurrence of rain-wind-induced or wind-induced vibration of cable that the derivative of lift coefficient with respect to transient angle of attack is less than zero. When rain-wind-induced vibration occurs, the aerodynamic force has a dual function for the vibration, and the maximum amplitude of stayed-cable is determined by the relative value of aerodynamic exciting force and aerodynamic damping force.展开更多
Based on the height of back-filled materials, thickness of ore body, height of boundary pillar and dipping angle of ore body and water pressure, the safety factors of all the pillars are calculated with the limit equi...Based on the height of back-filled materials, thickness of ore body, height of boundary pillar and dipping angle of ore body and water pressure, the safety factors of all the pillars are calculated with the limit equilibrium method. The calculation results present that the safety factors of pillars in Sections 19, 20, 24, 28 are less than 1.3, and those of unstable sections are identified preliminarily. Further, a numerical investigation in Sections 18, 20, 22, 24, 25 and 28 implemented with numerical code RFPA20 is employed to further validate the pillar performance and the stability of stopes. The numerical results show the pillars in Sections 18, 22 and 24 are stable and the designed pillar size is suitable. The width of the ore body near Section 28 averages 20 m, failure occurs in the left stope, but the boundary pillars near Section 28 maintain good performance. The pillars in Sections 20 and 25 are unstable which are mainly affected by the Faults F8 and F18. The existence of faults alters the stress distribution, failure mode and water inrush pathway. This work provides a meaningful standard for boundary pillar and stope design in a mine as it transitions from an open pit to underground.展开更多
Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasti...Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.展开更多
Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching p...Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching process, the thermodynamics and kinetics characteristics of the system with three valves of different flow characteristics were got. The simulation results show that the values of the peak-to-average ratios of dimensionless acceleration with the equal percentage valve, the linear valve and the quick opening valve are 1.355, 1.614 and 1.722, respectively, and the final values of the dimensionless velocities are 0.843, 0.957 and 1.0, respectively. In conclusion, the value of the dimensionless velocity with the equal percentage valve doesn't reach the set value of 0.90 when the dimensionless displacement is 0.82, while the system with the linear valve can meet the launching requirement, as well as the fluctuation range of dimensionless acceleration is less than that of the quick opening valve. Therefore, the system with the linear valve has the best performance among the three kinds of valves.展开更多
基金Project(51078170) supported by the National Natural Science Foundation of ChinaProject(10JDG097) supported by Jiangsu University Talents Funds,China
文摘Rain-wind-induced vibration of cable was studied based on previous research achievements. According to the quasi-steady assumption, the governing equation of vertical motion of the cable was derived and the criterion for unstable motion and occurrence mechanism was studied. A comparison was performed between the oscillation responses of the stay cable obtained from calculated model and previous results. The results indicate that the analysis model can reflect the main characteristics of wind-rain-induced vibrationt of the cable which is amplitude- and velocity-restricted, and it is probably related with the periodic vortex shedding of wake flow. It is essential for the occurrence of rain-wind-induced or wind-induced vibration of cable that the derivative of lift coefficient with respect to transient angle of attack is less than zero. When rain-wind-induced vibration occurs, the aerodynamic force has a dual function for the vibration, and the maximum amplitude of stayed-cable is determined by the relative value of aerodynamic exciting force and aerodynamic damping force.
基金Projects(1004025,51174044,50934006)supported by the National Natural Science FoundationProject(2011AA060400)supported by the National High Technique Research and Development Program of ChinaProject(Sklgduek1113)supported by Funds of the State Key Laboratory for Geomechanics&Deep Underground Engineering,Chinese University of Mining and Technology,China
文摘Based on the height of back-filled materials, thickness of ore body, height of boundary pillar and dipping angle of ore body and water pressure, the safety factors of all the pillars are calculated with the limit equilibrium method. The calculation results present that the safety factors of pillars in Sections 19, 20, 24, 28 are less than 1.3, and those of unstable sections are identified preliminarily. Further, a numerical investigation in Sections 18, 20, 22, 24, 25 and 28 implemented with numerical code RFPA20 is employed to further validate the pillar performance and the stability of stopes. The numerical results show the pillars in Sections 18, 22 and 24 are stable and the designed pillar size is suitable. The width of the ore body near Section 28 averages 20 m, failure occurs in the left stope, but the boundary pillars near Section 28 maintain good performance. The pillars in Sections 20 and 25 are unstable which are mainly affected by the Faults F8 and F18. The existence of faults alters the stress distribution, failure mode and water inrush pathway. This work provides a meaningful standard for boundary pillar and stope design in a mine as it transitions from an open pit to underground.
基金Project supported by the Fundamental Research Funds for the Central Universities,China
文摘Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.
基金Project(20080431380)supported by the National Postdoctoral Science Foundation,China
文摘Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching process, the thermodynamics and kinetics characteristics of the system with three valves of different flow characteristics were got. The simulation results show that the values of the peak-to-average ratios of dimensionless acceleration with the equal percentage valve, the linear valve and the quick opening valve are 1.355, 1.614 and 1.722, respectively, and the final values of the dimensionless velocities are 0.843, 0.957 and 1.0, respectively. In conclusion, the value of the dimensionless velocity with the equal percentage valve doesn't reach the set value of 0.90 when the dimensionless displacement is 0.82, while the system with the linear valve can meet the launching requirement, as well as the fluctuation range of dimensionless acceleration is less than that of the quick opening valve. Therefore, the system with the linear valve has the best performance among the three kinds of valves.