叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal clas...叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal classification,MUSIC)能实现抗混叠但无法充分发挥平滑方法的优势。因此,提出适用于叶端定时信号处理的前后向平滑MUSIC法,通过建立传感器的对称布局条件,利用前后向平滑方法代替前向平滑方法,得到更准确的自相关矩阵估计,进而提高叶片固有频率估计性能,并通过仿真和试验验证了在样本数量、算法参数等相同的情况下,前后向平滑MUSIC法的混叠与噪声抑制能力得到了提升。展开更多
文摘叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal classification,MUSIC)能实现抗混叠但无法充分发挥平滑方法的优势。因此,提出适用于叶端定时信号处理的前后向平滑MUSIC法,通过建立传感器的对称布局条件,利用前后向平滑方法代替前向平滑方法,得到更准确的自相关矩阵估计,进而提高叶片固有频率估计性能,并通过仿真和试验验证了在样本数量、算法参数等相同的情况下,前后向平滑MUSIC法的混叠与噪声抑制能力得到了提升。